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SUMMARY

Neural responses are noisy, and circuit structure
can correlate this noise across neurons. Theoretical
studies show that noise correlations can have
diverse effects on population coding, but these
studies rarely explore stimulus dependence of noise
correlations. Here, we show that noise correlations in
responses of ON-OFF direction-selective retinal gan-
glion cells are strongly stimulus dependent, and we
uncover the circuit mechanisms producing this stim-
ulus dependence. A population model based on
these mechanistic studies shows that stimulus-
dependent noise correlations improve the encoding
of motion direction 2-fold compared to independent
noise. This work demonstrates a mechanism by
which a neural circuit effectively shapes its signal
and noise in concert, minimizing corruption of signal
by noise. Finally, we generalize our findings beyond
direction coding in the retina and show that stim-
ulus-dependent correlations will generally enhance
information coding in populations of diversely tuned
neurons.

INTRODUCTION

Basic biophysical considerations mean that sensory signals are

inevitably corrupted with noise. Divergence of these noisy sig-

nals to multiple downstream neurons will cause those neurons’

response to covary. The noise correlations that result from

such common circuit mechanisms can have diverse effects on

coding, ranging from redundant codes, in which groups of cells

encode less information than would be predicted from studying

the individual cells they contain, to synergistic codes, in which

they encode more (Averbeck et al., 2006; Hu et al., 2014;

Schneidman et al., 2003; Shamir, 2014; Zohary et al., 1994;

Romo et al., 2003; Jeanne et al., 2013; Wilke and Eurich, 2002;

Wu et al., 2004; Shamir and Sompolinsky, 2004). Understanding

the impact of noise correlations on coding is essential for under-
standing the fidelity with which neural circuits can compute and

direct behavior.

Observed noise correlations are diverse in magnitude and

structure. In cortex, average noise correlations are often posi-

tive, small, and depend on similarities between the cells’ tuning

to different stimuli (Ecker et al., 2014; Gawne and Richmond,

1993; Bair et al., 2001; Reich et al., 2001; Cohen and Kohn,

2011; Ecker et al., 2010; Shamir, 2014). The small amplitude of

noise correlations has been attributed to circuits operating in a

balanced state, in which correlated fluctuations in excitatory

and inhibitory inputs cancel (Renart et al., 2010; Graupner and

Reyes, 2013; Hansen et al., 2012). However, the balanced state

does not always hold (Hansen et al., 2012; Cafaro and Rieke

2010), and noise correlations can be quite strong. Moreover,

noise correlations can depend on neural firing rate (de la Rocha

et al., 2007) and on the stimulus presented (Kohn and Smith,

2005; Cohen and Kohn, 2011; Lin et al., 2015). Because of these

issues, the extent of correlations between cells and how those

correlations are constrained by the synaptic input cells receive

is unclear.

Theoretical work provides guidelines for how noise correla-

tions can affect sensory coding: noise that mimics the signals

being conveyed by the population will be deleterious to the pop-

ulation code, whereas noise with different statistical structure

than the signal is relatively benign. Most theoretical work con-

siders the case where correlations are constant across stimuli

and across neural firing rates (e.g., Zohary et al., 1994; Abbott

and Dayan, 1999; Dayan and Abbott, 2001; Panzeri et al., 1999;

Oram et al., 1998; Shamir and Sompolinsky 2006; Averbeck

et al., 2006; Shamir, 2014). Other work suggests that stimulus

dependence can alter the impact of correlations on sensory cod-

ing (Josi�c et al., 2009; Wu et al., 2004; Montani et al., 2007). The

importance of this issue is highlighted by studies showing that

correlations between cells can be strongly modulated by neural

firing rates and stimuli (de la Rocha et al., 2007; Binder and

Powers 2001; Franke et al., 2016; Lampl et al., 1999; Samonds

and Bonds, 2005; Granot-Atedgi et al., 2013; Ponce-Alvarez

et al., 2013; Lin et al., 2015; see also Kohn and Smith, 2005). Pre-

vious theoretical work, however, did not isolate the impact of

stimulus dependence of the correlations in neural populations

from other factors such as the diversity of correlation coefficients

across the population (Josi�c et al., 2009; Wu et al., 2004).
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Thus, the extent, origins, and coding impact of stimulus-

dependent correlations remain unclear. This is largely because

few experimental preparations permit direct investigation of

the circuit mechanisms shaping signal and noise for physiologi-

cally relevant stimuli. A notable exception is the population of

ON-OFF directionally selective retinal ganglion cells (ooDS cells)

in which the relevant stimulus space (direction ofmoving objects)

is simple and well described (Barlow and Levick, 1965; Oyster

and Barlow, 1967). Knowledge of the stimulus parameters that

these cells encode and the accessibility of the retina to mecha-

nistic investigations allowed us to answer several general ques-

tions about the role of noise correlations in neural population

codes: what is the structure (including stimulus dependence)

of correlated noise in a neural population? How are these

correlations generated by the circuitry? What impact do correla-

tions have on the fidelity of sensory encoding? Computational

modeling allowed us to generalize our findings beyond the

ooDS system. This reveals that correlation structures that would

be harmful to the population code in the absence of stimulus

dependence lead to significant improvements in coding accu-

racy in the presence of stimulus dependence.

RESULTS

Our aim is to understand the impact of noise correlations in ooDS

cell populations. First, we show that the direction of a moving

stimulus modulates noise correlations between pairs of ooDS

cells. Second, we provide a simple example for why stimulus

dependence might change how correlations affect population

codes. Third, we use intracellular recordings to uncover the

circuit mechanisms underlying stimulus-dependent noise corre-

lations. Using this mechanistic description, we develop a

computational model to extrapolate beyond our paired record-

ings and demonstrate that the observed stimulus-dependent

correlations improve direction encoding by the ooDS cell popu-

lation. Fourth, we perform theoretical calculations that suggest

that stimulus-dependent noise correlations of the form that are

observed in the ooDS cell population will enhance population

codes in other neural circuits.

Correlated Variability in the Spiking Responses of ooDS
Cell Pairs
To characterize noise correlations in ooDS cell spike outputs, we

recorded simultaneously from cell pairs while projecting moving

bars of light onto the mouse retina. There are four subtypes of

ooDS cells based on direction tuning, each of which responds

preferentially to motion in one of the cardinal directions (Fig-

ure 1A; Barlow and Levick, 1965; Oyster and Barlow, 1967).

This means that there are three types of ooDS cell pairs as

defined by the separation in their tuning curve peaks (0�, 90�,
or 180�). We recorded from neighboring ooDS cell pairs with

each possible tuning relation; these neighboring cells have

partially overlapping receptive fields and thus encode motion

in the same region of visual space.

We presented moving bars in eight different directions and

measured the spike count during the 2–3 s response to each

stimulus (Figure 1B). We computed the mean (neural tuning

curves; Figure 1C) and covariability (noise correlations; Figures
370 Neuron 89, 369–383, January 20, 2016 ª2016 Elsevier Inc.
1D–1G) of the spike count across many repeats of each bar di-

rection. Both measures varied systematically with bar direction

(see also Amthor et al., 2005; Franke et al., 2016). Moreover,

there was a clear relationship between the mean responses of

the two cells and their correlation coefficient (Figures 1E, 1F,

and S2): higher geometric mean responses (square root of the

product of the tuning curves) occurred together with higher cor-

relation coefficients (see also Franke et al., 2016). This effect was

independent of the type of ooDS pair recorded, and all three

types had mostly positive noise correlations (Figures 1E–1G).

Thus, correlations were strongest when both cells were strongly

spiking, regardless of their tuning.

Cell pairs with similar tuning curves (0� pairs) have many stim-

ulus values where both cells fire strongly and thus have high cor-

relation coefficients when averaged across stimuli (Figure 1G).

The dependence of the (average) strength of noise correlations

on tuning curve overlap is consistent with the notion of ‘‘limited

range’’ correlations in the literature (Averbeck et al., 2006; Sha-

mir, 2014; Zohary et al., 1994; Cohen and Kohn, 2011; Ecker

et al., 2011; Abbott and Dayan, 1999; Sompolinsky et al.,

2001). These ‘‘limited range’’ correlations are typically thought

to be harmful to neural population codes (Averbeck et al.,

2006). However, most previous examinations of these correla-

tions have only considered the case where they are independent

of the stimulus (see Lin et al., 2015 for an exception). Below, we

show that stimulus-dependent correlations can lead to different

conclusions.

Why Might Stimulus Dependence of Noise Correlations
Affect Neural Population Codes?
Noise correlations can be strongly stimulus dependent (Figures

1E and 1F; de la Rocha et al., 2007; Binder and Powers 2001;

Franke et al., 2016; Lampl et al., 1999; Samonds and Bonds,

2005; Granot-Atedgi et al., 2013; Ponce-Alvarez et al., 2013;

see also Kohn and Smith, 2005). Nonetheless, reported noise

correlations are often averaged across stimuli. Figure 2 below

provides a simple example, based on cell pairs, to illustrate

how stimulus dependence can change the impact of noise cor-

relations (also see Franke et al., 2016).

The impact of noise correlations on neural encoding depends

on the structure of the signal space (Averbeck et al., 2006), which

describes how the mean population response changes as the

relevant stimulus parameter changes. The black line in Figure 2B

illustrates the signal space for a hypothetical pair of neurons en-

coding motion direction with tuning curves shown in Figure 2A

(solid curves). Noise spreads responses out along the signal

space, leading to ambiguity in the mapping between stimuli

and neural responses. The impact of this noise is represented

by the projection of the noise onto the signal space (Figure 2B).

Noise oriented along the signal space limits the precision with

which the signal is encoded, while noise along axes orthogonal

to the signal space does not (Averbeck et al., 2006; Shamir

2014; Panzeri et al., 1999).

Stimulus dependence of correlations alters coding by shaping

the noise relative to the signal space. To illustrate this effect, we

compare stimulus-dependent noise correlations resembling

those in our data (Figure 2A, blue line) with stimulus-independent

noise correlations (Figure 2A, red line); since the two types of
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Figure 1. Stimulus Dependence of ooDS Cell Pair Responses
(A) We performed simultaneous recordings from pairs of nearby ooDS cells with overlapping receptive fields.

(B) Raster plot of spike responses from an ooDS cell pair in response to bars moving in eight different directions. See Supplemental Information and Figure S1 for

details on ooDS cell identification.

(C) Mean ± SEM spike count as a function of bar direction (‘‘tuning curve’’) for each cell in the pair—these cells have an �180� offset in their preferred

directions.

(D) Spike counts of the ooDS cell pair over many repeats of the same stimulus, shown for two directions of motion. Marginal distributions along axes show trial-to-

trial variability in spike responses, while full response distributions show that this variability is correlated between cells (left distribution: linear correlation

coefficient = 0.52, p < 10–4; right distribution: linear correlation coefficient = 0.80, p < 10–11).

(E) We computed the geometric mean spike count for the pair by taking the square root of the product of the two tuning curves.

For the cell pair in (B)–(D) (left panel), the noise correlation coefficient (red: error bars show 95% confidence intervals) varies with bar direction and follows the

geometric mean ± SEM spike count (gray, dotted line). The same is true for a pair of cells with the same preferred direction (right panel). Corresponding data for all

14 recorded cell pairs is shown in Figure S2.

(F) Summary of the relationship between the geometric mean responses and the noise correlation coefficient. Before computing the geometric mean responses,

we first normalized the tuning curve of each cell. Each point corresponds to one stimulus presented to one cell pair (8 stimuli per pair, 14 recorded pairs). Filled

symbols denote the mean ± SD correlation in each bin. Note that the spike count correlation increases with geometric mean spike count (linear correlation

coefficient = 0.49, p = 5 3 10–8). Filled, colored symbols represent the example pairs in (E).

(G) Mean ± SEM correlation coefficient over all eight directions for cell pairs with approximately 0�, 90�, and 180� offset in their preferred directions.
correlations are equal when averaged across stimuli, we refer to

the stimulus-independent correlations as ‘‘matched’’ to the stim-

ulus-dependent ones. Stimulus dependence causes the projec-

tion of the noise along the signal space to be smaller than the

stimulus-independent case for stimuli between the two cells’

tuning curve peaks (Figure 2B, ‘‘Stim. 1’’); other stimuli yield

similar projections for stimulus-dependent and matched stim-

ulus-independent noise correlations (‘‘Stim. 2’’ and ‘‘Stim. 3’’).

This example emphasizes that the responses of populations

with stimulus-dependent and matched stimulus-independent

correlations differ and that this difference can affect the fidelity

of the population code. Sensory information is generally en-
coded by neural populations with more than two cells, and

intuitions about the overall impact of correlations do not neces-

sarily extrapolate from cell pairs to larger populations (Hu et al.,

2014). Nevertheless, the general rule still holds that fluctuations

along axes orthogonal to the signal space do not limit coding

fidelity.

Below, we use intracellular recordings and computational

modeling to characterize the structure of both signal and noise

in larger ooDS cell population responses. We then present theo-

retical calculations showing that, in general, stimulus-dependent

correlations of the type seen in our data improve population cod-

ing in diversely tuned neural populations.
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Figure 2. Stimulus Dependence of Noise Correlations May Change
Our Perspectives on Neural Population Coding

(A) Tuning curves of two model neurons (solid lines), along with the noise

correlation coefficient (dashed blue line), which is assumed to be proportional

to the geometric mean of the neural tuning curves (as in Figure 1F). For

comparison, we show the average of that correlation coefficient over stimuli

(horizontal dashed red line).

(B) For the tuning curves in (A), we computed the pairs of mean responses

elicited by all possible stimulus angles: this ‘‘signal’’ is indicated by the black

curve. To investigate the relationship between the trial-to-trial variability and

this signal curve, we assumed Poisson-like variability (variance equal to mean)

and computed the stimulus-conditioned response distributions assuming

either stimulus-dependent correlations (as in A; solid blue ellipses) or stimulus-

independent correlations that matched the average of the stimulus-dependent

correlations (dashed red ellipses). Ellipses show 1SDprobability contours for 3

different stimulus values (stimulus values indicated on A). By changing the

projections of the stimulus-conditioned distributions onto the signal curve

(indicated, for example, by the double-headed arrows for the responses to

stimulus 1), the stimulus dependence of the correlations impacts the popu-

lation code.
Mechanisms Underlying Stimulus-Dependent
Correlations
Biophysical Origins of Stimulus-Dependent Correlations

Several considerations suggest that noise correlations in the

ooDS population result from common synaptic input rather
372 Neuron 89, 369–383, January 20, 2016 ª2016 Elsevier Inc.
than recurrent coupling. First, only one of the four ooDS cell

types is gap-junction coupled to ooDS cells with the same direc-

tion tuning, while the other 3 sub-types have no such coupling

(Trenholm et al., 2011, 2013;). Second, there is no known

coupling between ooDS cells of different sub-types. Hence

neither 90� nor 180� pairs are coupled. Correlations for 0� pairs
resembled those of 90� and 180� pairs (Figure 1F), suggesting

that recurrent coupling is not strongly influencing the observed

correlations. Third, a feed-forward model of ooDS cell popula-

tions (Figure 6) can account for the observed correlations, sup-

porting the idea that feed-forward circuit architectures suffice

for understanding them.

To elucidate the circuit mechanisms responsible for the noise

correlations, we characterized the synaptic inputs to ooDS cells.

We measured all four inputs to a cell pair (i.e., excitatory and

inhibitory inputs to each cell), simultaneously using an alter-

nating-voltage clamp technique (Cafaro andRieke, 2010; Figures

3A and 3B; see Experimental Procedures). We switched the

holding potential between the excitatory and inhibitory reversal

potentials every 5 ms and measured the excitatory or inhibitory

current at the end of each such period (Figures 3A and 3B). Linear

interpolation of these sampled currents yields a near-simulta-

neous estimate of both synaptic currents (Figure S3).

This approach allows measurement of all relevant means, var-

iances, and covariances for inputs to two ooDS cells. We start by

describing the means and (co)variances of inputs to single cells

(Figure 3). We then measure the covariances of the inputs to

different cells (Figure 4).

Variability in Synaptic Inputs: Single Cells

The mean excitatory (E) and inhibitory (I) conductances had

opposite preferred bar directions, but I inputs were more

strongly and consistently tuned (Figure 3C). Consequently, E

and I inputs do not remain balanced as the stimulus varies.

We estimated the variability in the synaptic inputs elicited by a

moving bar by subtracting an estimate of the mean response

from the responses recorded on individual trials (Figure 3C;

see Supplemental Information for details). The conductance re-

siduals were used to compute the variances and covariances

as a function of time delay (Figure 3D). All three single-cell (co)

variances were modulated with bar direction—much as noise

correlations in the spike outputs depended on direction (Figures

1D and 1E).

Based on the stimulus dependence of the means and

(co)variances, as well as prior work on the sharing of upstream

noise in the retina (Trong and Rieke, 2008; Ala-Laurila et al.,

2011), we hypothesized a circuit architecture wherein a multipli-

cative stimulus-dependent gain acts on separate E and I path-

ways that share common, noisy input (Figure 3E). In the model,

upstream noise diverges into parallel E and I pathways and

hence is shared between them. Each pathway includes a stim-

ulus-dependent multiplicative ‘‘gain’’ term (gE and gI) equal to

the mean conductance in that channel for the given stimulus.

Finally, additional noise (NE and NI), independent in the two path-

ways and not subject to the multiplicative gain, is added. This

model can be implemented with signal-independent noise prop-

erties and a single exponential nonlinearity (Figure S4).

The model of Figure 3E predicts a linear dependence of the

variance of E or I inputs on the square of the respective gain



and, similarly, a linear dependence of the covariance of E and I

inputs on the product of the E and I gains. We estimated the

means of the E or I conductances during short windows about

the peak response to the stimulus (see Experimental Proce-

dures), set the gains in our model equal to these mean conduc-

tances, and measured the peak (co)variability in the synaptic

inputs during the same time window. Our data support the pre-

dicted linear dependence of (co)variance on squared gains (Fig-

ures 3F, 3G, and S5). These results suggest that the ooDS cell

synaptic inputs are well described by the model of Figure 3E in

which common input noise, modulated by stimulus-dependent

gain factors, underlies the co-fluctuations of E and I inputs to sin-

gle neurons.

Related models that explicitly couple gain (equal to the mean

response to a given stimulus in our case) and (co)variance fluc-

tuations across time or stimuli have been recently explored (Lin

et al., 2015; Goris et al., 2014). Our model is equivalent to the

‘‘multiplicative’’ one considered by Lin et al. (2015), where the

gain is proportional to the variance, and is similar to the model

of Goris et al. (2014), where the gain and variance are related

but not strictly proportional. Our model differs from that of Ecker

et al. (2014), which has no explicit relationship between gain and

variance.

Variability in Synaptic Inputs: Cell Pairs

In addition to the converging (co)variances of the inputs to single

cells, the paired alternating-voltage recordings characterized the

four pairwise input covariances (Figure 4A): covariance between

excitatory input into cell 1 and excitatory input into cell 2 (‘‘EE’’

covariance), covariance between inhibitory inputs (‘‘II’’), excit-

atory-inhibitory (‘‘EI’’) covariance, and inhibitory-excitatory

(‘‘IE’’) covariance. We computed these covariances using the

conductance residuals as in Figure 3C. The pairwise input co-

variances, like the single-cell covariances, showed a clear

dependence on bar direction (Figures 4B and 4C).

We generalized the network model used to capture the

stimulus dependence of the inputs to single cells to cell pairs

(Figure 4A). This generalized model similarly predicts that the

covariance of each of the pairwise inputs will depend linearly

on the product of the relevant gains. This prediction is confirmed

by our paired recordings (Figures 4D and 4E): the circuit archi-

tecture in Figure 4A offers a parsimonious circuit-level explana-

tion for shared stimulus-dependent fluctuations in the inputs to

neural populations; shared upstream noise, modulated by the

stimulus-dependent gain, leads to co-fluctuations in the synap-

tic inputs experienced by ooDS cell pairs.

Relating Input and Output Correlations

How do the different sources of input correlation collectively

generate output correlations? The transfer of input correlations

to output correlations depends on the relative strength of excit-

atory and inhibitory inputs and on nonlinearities in synaptic inte-

gration and spike generation (Figure S6; de la Rocha et al., 2007;

Shea-Brown et al., 2008). Of particular relevance here, the

effects of EE and II input correlations (which positively correlate

the cells’ spiking responses) can be at least partially canceled by

EI input correlations (Renart et al., 2010; Graupner and Reyes,

2013; Hansen et al., 2012; Shadlen and Newsome, 1994, 1998;

Ly et al., 2012). Such cancellation is particularly effective for neu-

rons operating in a balanced regime where E and I inputs are
similar in magnitude, and this is often cited as a reason for the

weak average correlations exhibited in cortical circuits. How-

ever, the tuning of ooDS cells relies on modulation of I relative

to E (Figure 3C), which in turn modulates the EI correlations (Fig-

ures 4B and 4C). This suggests that EI correlations may not

always cancel EE and II input correlations.

Linear predictions of output correlations based on the

measured synaptic inputs should reveal a role of EI correlations

in limiting output correlation strength. However, such linear pre-

dictions failed to capture output correlations (Figure S6). Hence,

we used dynamic clamp techniques to determine how manipu-

lating input correlations affected output correlations (Cafaro

and Rieke, 2010; Sharp et al., 1993). The dynamic clamp

approachmeasures a cell’s voltagewhile injecting current calcu-

lated from the measured time-varying conductances. We

manipulated the correlations in the inputs by injecting either

simultaneously recorded conductances (correlated) or non-

simultaneously recorded conductances (uncorrelated), mea-

sured in response to the same stimulus (e.g., Figures 5A and

5B). By comparing spike responses recorded under different

conditions (Figure 5C), we isolated the impacts of different types

of input correlations on the correlations in the cells’ spiking re-

sponses. Spike count correlations weremeasured as in Figure 1.

Spikes produced when EI correlations were removed and EE

and II input correlations were retained showed higher output

noise correlations than did control data in which all input correla-

tions were left intact (Figure 5D). Spike responses in which

pairwise EI input correlations were retained and EE and II input

correlations were removed showed near-zero or negative corre-

lations (Figure 5E). Theseobservations support thegeneral notion

that EE and II correlations increase, whereas EI correlations

reduce, correlations in spiking responses.However, the suppres-

sive impact of EI correlations was relatively small compared to

the role of EE and II correlations— the inclusion of EI correlations

(Figure5D) reducedoutputcorrelationsby just34%±8%(mean±

SEM). Thus, the impact of EI correlations may be relatively

modest during stimuli that modulate the EI balance.

Impact of Stimulus-Dependent Correlations on
Direction Coding
The mechanistic understanding from the above experiments

allowed us to construct a model of the ooDS cell population in

which we could manipulate the noise correlations and investi-

gate their impact on direction coding. We then generalized our

study of the impact of stimulus-dependent correlations on pop-

ulation coding to arbitrary heterogeneous neural populations.

A Mechanistic Model of a ooDS Cell Population

Ganglion cell tiling and dendritic overlap (Amthor and Oyster,

1995) suggest that a given region of visual space is sampled

by at least eight ooDS cells (two of each of the four sub-types).

We constructed a mechanistic model to understand direction

coding by these 8-cell populations. The model allowed us to

explore stimulus space more completely than we could experi-

mentally and to manipulate otherwise inaccessible features like

the stimulus dependence of spike correlations.

The model follows the architecture revealed by our experi-

ments (Figure 4A; see Supplemental Information and Figure S7).

The model has 13 free parameters describing basic network and
Neuron 89, 369–383, January 20, 2016 ª2016 Elsevier Inc. 373
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Figure 3. Alternating Voltage Clamp Measurements Reveal Sources of Variability in Single-Cell Synaptic Inputs

(A) Method of paired alternating voltage clamp recordings: the voltage command (top) for both cells recorded simultaneously was alternated between the

excitatory and inhibitory reversal potentials while the current (black traces) was recorded. Interpolating between the last value measured on each cycle yields an

estimate of each cell’s excitatory (blue) and inhibitory (red) current nearly simultaneously.

(B) We simultaneously measured these four synaptic currents (excitatory and inhibitory inputs to each cell) while presentingmoving bar stimuli. Highlighted region

corresponds to the traces in (A).

(C) Excitatory (blue) and inhibitory (red) conductances in a pair of ooDS cells measured simultaneously in response to moving bars. Mean responses (shading

indicates SEM) reveal tuning of input conductances. Subtracting the mean conductance traces (over nearby trials) from single-trial traces, we obtained residuals,

which are shown for a single trial.

(legend continued on next page)
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Figure 4. Alternating Voltage Clamp Experi-

ments Reveal the Sources of Co-variability

between Synaptic Inputs to ooDS Cell Pairs

(A) Paired recordings as in Figure 3 allow mea-

surement of all four types of pairwise input co-

variances: EE (blue), II (red), EI (dotted green), and

IE: (solid green). The network model in Figure 3 was

generalized to account for pairwise input correla-

tions. A fraction of upstream noise is shared be-

tween cells in a pair (‘‘Common noise,’’ Nc).

(B) In response to two illustrative bar directions, the

pairwise input covariance functions are shown for

the example cell pair in Figure 3. As with single-cell

input (co)variances, pairwise covariances are

modulated by bar direction.

(C) Peak covariance of all four types of input cor-

relations as a function of bar angle for the example

cell pair.

(D) The stimulus-dependent gain model in (A) pre-

dicts a linear relationship between pairwise input

covariance and the relevant gain product—this

prediction is borne out in this example cell pair.

Solid lines show linear best fit. EI and IE covariances

have been combined for reasons of symmetry.

(E) Population data from 9 ooDS cell pairs showing

linear correlation coefficients between the three

pairwise covariances and their respective gain

products. Thick lines and error bars indicate

mean ± SEM, and filled points indicate the

example pair.
intrinsic cellular properties (the amplitudes of inhibitory and

excitatory inputs, the stimulus dependence of inhibitory input,

the variances of common versus independent noise sources,

etc.). We fit these parameters to match 15 different experimen-

tally measured quantities describing the single-cell and pair-

wise response statistics (Figures 6A and 6B).

The model has realistic tuning curves and realistic levels of

trial-to-trial response variability (Figures 6A and 6C). Moreover,

although the model was not directly fit to the rate-correlation

relationship (Figure 1F), it recreates it with high fidelity (Fig-
(D) Using conductance residuals, we computed three single-cell (co)variances of the inputs (as a function of ti

inhibitory variance (red), excitatory variance (blue), and single-cell excitatory-inhibitory covariance (black). S

example pair.

(E) Schematic of stimulus-dependent gain model. A portion of upstream noise is shared between cells and a

noise is multiplied by a stimulus-dependent gain factor: gE,1(s) or gI,1(s), defined as the measured mean

Thereafter, independent, post-gain noise is added to each channel (NE,1 and NI,1, respectively), yielding th

simultaneously, these inputs reveal the three possible (co)variances into a single cell.

(F) Single cell peak (co)variance as a function of gain product for the responses of cell 1 above to 8 different sti

the model’s prediction that (co)variance should be linearly related to the relevant gain product.

(G) Linear correlation coefficients between (co)variance and gain product for the three single-cell input (co)va

error bars indicate mean ± SEM, and filled points indicate the example cell.
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ure 6D). We next used the model to study

how the noise correlation structure affects

direction encoding.

Correlations, Stimulus

Dependence, and Direction Coding

by ooDS Cell Populations

Weused themodel to generate responses

to 500 different directions of motion; these
responses captured the experimentally observed first- and sec-

ond-order spiking statistics (see Supplemental Information).

Using these statistics (stimulus-dependent means and covari-

ances), we computed the linear Fisher information (see Experi-

mental Procedures), which quantifies the population’s coding

ability. The Fisher information places an upper bound on the pre-

cision with which the stimulus can be recovered from the neural

responses by an unbiased linear estimator (Rao, 1945; Cramer,

1946) and is a standard way to assess neural population coding

(Abbott and Dayan, 1999; Shamir, 2014; Moreno-Bote et al.,
me delay) for each stimulus and each cell in the pair:

hown are the (co)variance functions for cell 1 of the

mong excitatory and inhibitory channels. Upstream

conductance in each channel for each stimulus.

e noisy conductance inputs to the cell. Measured

muli. Solid line shows the linear best fit: data confirm

riances measured in 21 ooDS cells. Thick lines and

, January 20, 2016 ª2016 Elsevier Inc. 375
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Figure 5. Pairwise Input Correlations Differentially Shape Output Correlations

(A) Example input conductance traces measured in alternating-voltage experiments using three different bar directions and injected into recipient cells in dy-

namic-clamp experiments. By shuffling conductance combinations we can exclude or include specific sets of input correlations. For these inputs to cell 1 (top)

and cell 2 (bottom) on this trial, we have taken the excitatory conductancesmeasured on trial 2 and combined themwith the inhibitory conductancesmeasured on

trial 1, leaving only pairwise EE and II input correlations intact while breaking all other sources of input correlations.

(B) Combined conductances are injected into a recipient ooDS cell, whose output voltage is measured, and spike correlations are measured as in Figure 1.

(C) Schematic showing the logic of shuffling input conductances to include specific sets of pairwise input correlations.

(D) Correlation coefficients for dynamic clamp trials where all input correlations were left intact versus those where only pairwise EE and II correlations remained.

Each point corresponds to one stimulus for one pair; shown are data from 11 cells, three stimuli each (52–88 trials, mean 72 trials). Dotted line is unity. Removing

pairwise EI correlations increased output correlations (p = 2 3 10–5, paired t test).

(E) Same as (D) but showing trials where all input correlations remained versus thosewherein only pairwise EI correlations were intact. Removal of pairwise EE and

II correlations decreased output correlations (p = 2 3 10–10, paired t test).
2014; Hu et al., 2014).We first compared coding performance for

model responses with the stimulus-dependent correlation struc-

ture with that for trial-shuffled uncorrelated data (Figure 6E);

correlated responses provided >100% more information. Ana-

lyses of coding based on simultaneous recordings from larger

populations (Franke et al., 2016) show similar improvements in

coding performance.

What are the key features of the correlations that give rise to

their beneficial impact on coding performance? Observed noise

correlations were strongly modulated with the stimulus (Fig-

ure 1F). To investigate the role of this stimulus dependence, we

generated responses in which the noise correlations for a given

cell pair, for all stimuli, were maintained at the average value of

the correlation for that pair (Figure 6E, ‘‘Matched Stim.-Indep.

Corr.’’). Like the uncorrelated data, these responses had rela-

tively low information. This suggests that the stimulus depen-

dence of the correlations is an important feature of the population

code and that the average (over stimuli) level of correlation does

not necessarily capture how correlations affect coding.

One limitation of the analysis above is that linear Fisher infor-

mation cannot extract information encoded, for example, in the
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stimulus-dependent variances of the neural activities (Shamir

and Sompolinsky, 2004). To verify the robustness of our findings

(Figure 6), we repeated the above investigations using different

measures of coding performance. We quantified the error of

the maximum likelihood estimator (MLE) and the optimal linear

estimator (OLE; Salinas and Abbott, 1994) of the stimulus given

the neural activities (see Supplemental Information). The results

(Figure S8) qualitatively match that which we obtained using

Fisher information.

Generalization to Larger and More Heterogeneous

Neural Populations

The 8-ooDS-cell model indicates that stimulus-dependent noise

correlations can significantly boost the neural direction code.

How do these observations apply to larger and possibly more

heterogeneous populations? To answer this question, we first

performed calculations of the amount of stimulus information

conveyed by neural populations with identically shaped and

evenly spaced tuning curves (Figures 7A–7C). For each popula-

tion and stimulus, the mean responses were given by the tuning

curves, and the variability was assumed to be Poisson-like

(variances equal to means). Finally, we assumed that the
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Figure 6. A Computational Model Captures the ooDS Cell Population Response Statistics and Reveals that Stimulus-Dependent Correla-

tions Significantly Improve the Population’s Direction Code

(A and B) Spiking statistics (black: ooDS cell population mean ± SEM) to which the model (red: average over 25 8-cell model populations) was fit. (A) Single-cell

statistics. (B) Pairwise statistics (see Supplemental Information).

(C) Tuning curves of an example 8-cell population generated by the fitted model.

(D) The rate-correlation relationship (Figure 1F) was not used in training the model; it serves as an independent test. Correlation coefficient and geometric mean

response for 250 model cell pairs (red dots) and 14 experimentally observed ooDS cell pairs (black circles), each in response to 8 different stimuli. The two

distributions are not significantly different (2D KS test, KS statistic 0.15, p = 0.2). Overlain are the mean correlation coefficients in the experimental data (black

symbols: mean ± SEM) in different bins of geometric mean response and in the computational model (solid red curve).

(E) Fisher information provided by model 8-cell population responses about the stimulus direction. Colors indicate the assumed correlation structure: stimulus-

dependent correlations, as in the experimental data (red); no correlations (yellow); or ‘‘matched’’ stimulus-independent correlations that, for each cell pair, match

the stimulus average of their stimulus-dependent correlation coefficients (blue). Error bars in (E) are the SEM over ensembles of 10 randomly generated model

populations.
correlations were stimulus dependent and proportional to the

geometric mean of the neural responses (as in the experimental

data, Figure 1F). The magnitude of the correlations was

parameterized by rmax, which determines the largest possible

correlation coefficient in the population. Our general setup and

computation of information in the case of stimulus-dependent

correlations follows (Josi�c et al., 2009; their IFmean), where

explicit analytical formulae are derived. The results for these ho-

mogeneous populations (Figure 7B) indicate that stimulus-

dependent correlations lead to much more information than is

contained in independent populations with the same tuning

curves and noise levels.

To directly test the importance of stimulus dependence, we

repeated our calculations while holding the correlation coeffi-

cient for each cell pair constant at that pair’s stimulus-averaged
value (as in red curve in Figure 2A). With these ‘‘matched’’ stim-

ulus-independent correlations, coding performance is typically

worse than that obtained by independent cells (Figure 7C).

Similar results are seen for populations with randomly shaped

and randomly located tuning curves (Figures 7D–7F). For this

case of stimulus-independent correlations, the correlation coef-

ficients have a ‘‘limited-range’’ structure (Averbeck et al., 2006;

Shamir, 2014; Zohary et al., 1994; Cohen and Kohn, 2011; Ecker

et al., 2011; Abbott andDayan, 1999; Sompolinsky et al., 2001) in

which the correlations between pairs of cells decrease as

the cells’ tuning curves become more widely spaced. These

limited-range correlations are typically thought to be harmful to

neural population coding, although that result can depend on

the heterogeneity of the neural tuning curves, and the speed

with which correlations fall off as tuning curve overlap decreases
Neuron 89, 369–383, January 20, 2016 ª2016 Elsevier Inc. 377
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Figure 7. Stimulus-Dependent Correlations Typically Improve Population Coding

(A–F)We generatedmodel neural populations of different sizes, with either identically shaped and evenly displaced tuning curves (example population shown in A)

or randomly shaped and located tuning curves (example population shown in D). For each population, we assumed Poisson-like variability and let the noise

correlation coefficients be stimulus dependent (being proportional to the geometricmeans of the cells’ tuning curves), with the overall magnitude of correlations in

the population being determined by the parameter rmax (maximum possible correlation coefficient, obtained for cell pairs where both cells are firing at their

maximum possible rates). For populations of different sizes, and with different rmax values, we then computed the Fisher information those populations provide

about the stimulus. On balance, stronger stimulus-dependent correlations yield better coding performance, over a wide range of population sizes (B and E).

(C and F) To understand how the stimulus dependence of the noise correlations affects the population code, we repeated our calculations from (B) and (E), but

instead of keeping the ‘‘full’’ stimulus-dependent correlation structure, we replaced the correlation coefficients for each cell pair with the average over stimuli of

that pair’s stimulus-dependent correlations: average correlations are ‘‘matched’’ between (B) and (C) and between (E) and (F). With stimulus-independent

correlations (in stark contrast to stimulus-dependent ones), larger correlations correspond to weaker population codes (C and F). Error bars in (E) and (F) are the

SEM over ensembles of 20 randomly chosen model populations. Average correlation values in the legends of (B) and (E) are averages over all stimuli and all cell

pairs. The values are larger for the heterogeneous population because the heterogeneous population has, on average, wider tuning curves.
(Shamir, 2014; Ecker et al., 2011; Shamir and Sompolinsky,

2006). Our results indicate that if the limited-range structure

arises due to stimulus dependence of the correlation coefficients

(as in our DS cell recordings; Figures 1E and 1F), then those cor-

relations can significantly improve the population code; this

effect might be missed if the stimulus dependence of the corre-

lations were ignored.

Do the coding benefits of stimulus-dependent correlations

occur in populations with small levels of correlation, as often ex-

hibited (on average) by cortical neurons (Ecker et al., 2010, 2014;

Gawne and Richmond, 1993; Bair et al., 2001; Reich et al., 2001;

Cohen and Kohn, 2011; Shamir, 2014)? While the largest coding

benefits are obtained for large rmax values, the average correla-

tion coefficients aremuch smaller than rmax. To highlight this, we

show in the legend to Figures 7B and 7E the average correlation

coefficient (averaged over stimuli and cell pairs) obtained for

each rmax value. Even for rmax = 0.8, the average correlation co-

efficient is only 0.11 (for the homogeneous population), which is

similar to the values typically reported in cortical recordings.

While one previous study analyzed the role of stimulus-depen-

dent correlations in neural population coding in a similar setting,

that work (Josi�c et al., 2009) compared the stimulus-dependent
378 Neuron 89, 369–383, January 20, 2016 ª2016 Elsevier Inc.
correlations to the case where the correlation coefficients were

stimulus independent and uniform across the population. That

investigation did not resolve whether coding improvement in

the stimulus-dependent case should be attributed to the stim-

ulus dependence of the correlations or to the diversity of

correlations across the population. For contrast, we compared

populations with stimulus-dependent correlations to popula-

tions with matched stimulus-independent correlations, where

those correlations varied between cells so as to match the

average (over stimuli) of the correlations in the stimulus-depen-

dent case. Our observations (Figure 7) thus resolve the ambiguity

left by (Josi�c et al., 2009) and point to significantly larger effects.

In summary, our calculations show that stimulus-dependent

noise correlations may be a generally beneficial feature of neural

population codes—and a feature that could be missed by aver-

aging correlations over stimuli when reporting spike correlations.

Geometrical Intuition: Orthogonality between Signal

and Noise

Why does the stimulus dependence of the noise correlations

have such a striking impact on the neural population code?

The impact of noise depends on its projection onto the signal

space (Figure 2). First, consider the signal space itself. For a
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Figure 8. Why and When Do Stimulus-Dependent Correlations Improve Neural Population Codes?

(A) The space of possible neural activities is shown. Each axis in this space is the firing rate of a single cell. Within that space, each stimulus elicits a distribution of

responses (ellipses show 1 SD probability contours). For populations (like those in Figures 7A, 7D, and 6C) whose tuning curves tile the response space, the

stimulus-averaged population responses (and thus the ‘‘signal’’ curve) tend to lie near a spherical shell in the space of possible neural activities. In this case, trial-

to-trial variability in the radial direction is relatively benign to the population code, whereas variability in the tangential direction (along the signal curve) is especially

pernicious.

(B) The mean response to a given stimulus is indicated by the green arrow. The amount of variability along the direction indicated by the mean response vector

(‘‘radial direction’’) is shown in orange.

(C) For heterogeneously tuned populations (as in Figure 7D), we computed the fraction of overall variability in the population responses that lies along the radial

direction as a function of the strength of the stimulus-dependent correlations (rmax). The calculation was repeated for several different population sizes; error bars

are ±1 SEM over 20 randomly drawn populations.

(D) To predict which populations will show coding benefits from stimulus-dependent correlations, we measured the cosine of the angle (q) between the stimulus-

induced changes in neural population responses and the mean (trial-averaged) population response vector.

(E) We considered 200 randomly generated populations of 100 cells each (blue data points). For each population, the stimulus-averaged cosine value (defined in

D) is shown (horizontal axis). For the same neural populations, we also computed the Fisher information, either in the presence of stimulus-dependent correlations

(rmax = 0.8) or with uncorrelated noise, and computed the percentage by which the population code formed in the presence of stimulus-dependent correlated

noise exceeds the performance of the population code formed in the presence of independent noise. For comparison, we repeated this calculation with 8-cell

populations (red data points), and we show the corresponding values for our 8-ooDS-cell model populations (black square; model is described in Figure 6; data

shown are averaged over 10 model ooDS cell populations, of 8 cells each). The ooDS cell population appears as an outlier to the point clouds in (E) because the

ooDS cell populations have a larger rmax value (of roughly 1; see Figure 6D) than the other populations shown here.
population of cells with tuning curves uniformly tiling the space of

stimulus direction (e.g., Figures 6C and 7A), each stimulus direc-

tion leads to strong activation of some cells and weak activation

of others. As the stimulus direction changes, the identities of the

active and inactive cells change, but the overall level of activity in

the population is relatively constant. Geometrically, this means

that the signal space will lie on or near the surface of a (hyper-)

spherical shell in the space of neural responses (Figure 8A). Vec-

tors pointing radially are orthogonal to this spherical signal

space. Thus, any trial-by-trial fluctuations that are radial in

response space (i.e., leading to changes in the magnitude but

not direction of the response vector) will minimally impact the

neural code for direction.

Increasing the magnitude of the stimulus-dependent correla-

tions increases the fraction of the trial-to-trial variability that is
in the radial direction (Figures 8B and 8C; see Supplemental In-

formation for mathematical explanation). This effect can be

observed in the pairwise model example in Figure 2 and can

be seen in our recorded ooDS pair population (Figure S9).

Thus, stimulus-dependent correlations enhance the population

code by shaping the noise in the population responses such

that it is orthogonal to the signal space. Interestingly, the stim-

ulus-dependent gain mechanism we uncovered in our ooDS

cell populations (Figures 4A and S7) can also be shown to orient

noise in the radial direction in the space of possible neural re-

sponses (see Supplemental Information for details).

Generality for Populations with Heterogeneous Tuning

Curves

The geometrical picture discussed above identifies the condi-

tions under which stimulus-dependent correlations will improve
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the population code: the benefits of stimulus-dependent correla-

tions arise whenever the ‘‘signal’’ curve is orthogonal to the radial

direction (i.e., when signals lie along a spherical shell). To test this

intuition, we developed a metric to measure the extent to which

the signals are orthogonal to the radial direction and tested this

metric across several neural populations with differing degrees

of tuning curve regularity.

Themetric we usedmeasures the cosine of the angle between

the mean response vector for a particular stimulus and the stim-

ulus-induced changes in the mean response vector (Figure 8D).

This cosine is averaged over all stimuli to yield our metric. When

the signal direction is typically orthogonal to the radial direction,

the average-cosine metric is near 0 (cosine of 90�), and stimulus-

dependent noise correlations are expected to enhance the pop-

ulation code. When the signals lie predominantly along the radial

direction in the response space, the average cosine metric will

be near 1 and the stimulus-dependent correlations may be

damaging to the population code.

We assembled many neural populations with randomly drawn

tuning curves (as in Figure 7C; see Supplemental Information for

details). For each population, we computed the Fisher informa-

tion (as a measure of the ability of the population to encode stim-

ulus direction) in either the presence of stimulus-dependent

noise correlations (with rmax = 0.8) or the presence of uncorre-

lated noise. For each population, we computed the percentage

improvement in population coding performance that is obtained

in the presence of stimulus-dependent correlations versus un-

correlated noise. By comparing the coding benefit of stimulus-

dependent correlations (vertical axis of Figure 8E) to the

average-cosine metric (horizontal axis of Figure 8E) for these

populations, we see that the average-cosine metric is a good in-

dicator of when stimulus-dependent correlations improve neural

population codes: low average-cosine values correspond to

large coding benefits from stimulus-dependent correlations.

We repeated our calculations on populations of both 8 and 100

cells and observed the same trends. This serves to confirm the

geometric intuition (Figure 8A) underlying the coding benefits

of stimulus-dependent correlations.

We emphasize that in generating Figure 8E we took extra care

to draw model populations that had a wide range of average-

cosine values. To do this, we forced the tuning curves to be clus-

tered together (not fully spanning the stimulus space) to varying

degrees (see Supplemental Information). If we had let the tuning

curves be randomly positioned within the stimulus space (as in

Figure 7D), we would have observed predominantly low values

of the average-cosine metric (not shown): when the tuning

curves randomly tile the stimulus space, the overall population

activity level varies relatively little as the stimulus changes. This

effect is magnified in larger populations. Thus, in large neural

populations, the geometrical picture presented in Figure 8A is

more likely to apply, and stimulus-dependent noise correlations

are more likely to improve population coding.

DISCUSSION

Studies of population coding in retinal ooDS ganglion cells pro-

vide a unique opportunity to investigate the extent, origins, and

impacts of correlated variability because the relevant circuit
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mechanisms can be studied directly in the context of physiolog-

ical stimuli and because the space of relevant stimulus parame-

ters encoded by these cells is clear. Our central finding is that the

circuitry shaping the synaptic inputs to ooDS cells generates

stimulus-dependent correlations in the cells’ trial-to-trial vari-

ability; these correlations enhance the precision of direction cod-

ing roughly 2-fold compared to the case of independent noise

(see also Franke et al., 2016).

Spike outputs of ooDS cells exhibit positive and strongly stim-

ulus-dependent noise correlations (Figure 1; see also Franke

et al., 2016; Amthor et al., 2005). The seemingly complex corre-

lation structure falls naturally out of a direction-tuned circuit with

shared upstream noise (Figures 3 and 4). Thus, divergence of

noisy signals produces correlated fluctuations in downstream

neurons; stimulus dependence of those correlations arises due

to circuit nonlinearities that control the gain of shared noise.

Such circuit mechanisms are common, and other neural circuits

are likely to share the beneficial shaping of noise described here.

Indeed, recent work shows that noise correlations in visual cor-

tex resemble those of the ooDS cells and that the resulting

shaping of noise can benefit coding (Lin et al., 2015).

In agreement with previous work (Renart et al., 2010; Graupner

and Reyes, 2013), correlations between excitatory and inhibitory

synaptic inputs decorrelated spike outputs (Figures 5D and 5E).

However, this decorrelating mechanism did not prevent large

output correlations in ooDS cells because excitatory and inhibi-

tory synaptic inputs are not always balanced (Figure 3). Indeed,

retinal direction selectivity is known to rely on a strongly modu-

lated ratio of excitatory to inhibitory input (Fried et al., 2002; Tay-

lor et al., 2000). Temporal EI imbalance has similarly been shown

to shape stimulus selectivity in many areas of the brain (Wilent

and Contreras, 2005; Ferster, 1988), and an EI imbalance has

been suggested to play a role in gating noise correlations in cor-

tex (Hansen et al., 2012).

The observed stimulus-dependent correlations enhance the

ability of the neural population to convey direction information,

and these findings generalize to large heterogeneous popula-

tions (Figures 7B and 7E; also see Josi�c et al., 2009). Moreover,

the strong population coding effects we see in the retinal ooDS

cell population emerged only when the stimulus dependence

of the correlations was accounted for. Thus, correlations that

look (on average) to be small and inconsequential for coding

may in fact be important features of the population code.

One clearway for noise correlations to improve population cod-

ing is if, for all cell pairs, the noise correlations have opposite signs

relative to the signal correlations (‘‘sign rule’’; Averbeck et al.,

2006; Hu et al., 2014; Jeanne et al., 2013; Panzeri et al., 1999;

Oram et al., 1998). This phenomenon is not responsible for the

strong boost in coding performance observed here (Figures 6

and 7). For example, in the 8-cell population, with two cells of

each sub-type, there will be four cell pairs in which both cells

have the same direction tuning (like the pair shown in Figures

1B–1E)andcorrespondinglypositive signal correlations.For these

cell pairs, the ‘‘sign rule’’ indicates that negative noise correlations

would improve the population code. However, we typically

observed positive noise correlations for these cell pairs. Thus,

the sign rule is strongly violated for some cell pairs, yet noise cor-

relationsstill improved thepopulationcodeonbalance (Figure6E).



What matters most in understanding how correlations impact

population coding in cases like these is the orientation of signal

and noise within the larger population, not within cell pairs (Hu

et al., 2014; Shamir, 2014; Abbott and Dayan, 1999; da Silveira

and Berry, 2014; Shamir and Sompolinsky, 2006). In other

words, the coding effect occurs at the population level and

cannot always be understood by looking at cell pairs in isolation.

Indeed, while some pairs showed reductions in coding precision

when noise correlations were removed (Figure S10, cf. sche-

matic in Figure 2), the effect for other pairs of cells was modest.

Related theoretical work shows that the sign rule identifies only

one of the myriad patterns of correlation that can substantially

improve population coding (Hu et al., 2014; Shamir, 2014; Franke

et al., 2016; da Silveira and Berry, 2014) relative to the case of in-

dependent cells. The current study provides a clear example of

how populations in which some pairwise responses violate the

sign rulemay nevertheless have noise correlations that are bene-

ficial to the population code.

The structure of the signal space depends onwhat is being en-

coded. Here, we considered the encoding of direction of motion

and found that the stimulus-dependent correlations were quite

beneficial. This is not generally true for all stimulus parameters.

For encoding contrast information (where the tuning of all

ooDS cells is similar), correlations may well be harmful. This em-

phasizes that correlations do not remove noise from the popula-

tion responses: rather, they orient noise along axes that may be

beneficial for some computations but potentially harmful to

others.

The circuit mechanisms that underlie the observed stimulus-

dependent noise correlations—diverging, stimulus-tuned excit-

atory and inhibitory inputs to multiple cells—are not unique to

the retina. Moreover, many sensory populations are composed

of neurons with heterogeneous tuning properties that together

span the relevant parameter space. These facts suggest that

the relation between the circuit mechanisms shaping noise cor-

relations and their impact on coding that we explored here may

have correlates in other circuits in the nervous system.

EXPERIMENTAL PROCEDURES

Tissue Preparation

We used 6- to 10-week-old mice (c57/BL6 or TRHR-GFP [Rivlin-Etzion et al.,

2011] or BDxTSY [Kim et al., 2010]). These mice express GFP in ooDS cells,

facilitating cell identification. BD mice were injected with tamoxifen (100 mg,

Sigma) intraperitoneally at postnatal day 0–1. The mice were dark adapted

at least 2 hr. Under IR illumination, animals were euthanized by cervical dislo-

cation and the eyes were removed and hemisected. The vitreous humor was

removed mechanically and eye cups were stored in a light-tight container

with 32�C bicarbonate-buffered Ames’ solution (Sigma), continuously bubbled

with 95%O2/5%CO2. For recording, wedges of retina were removed from the

sclera and retinal pigment epithelium and mounted photoreceptor-side down

onto a poly-D-lysine coated glass coverslip (BD Biosciences). Retinal mounts

were perfused with 30�C–36�C oxygenated Ames’ at 6–9 ml/min. All animal

procedures were approved by the Institutional Animal Care and Use Commit-

tee at the University of Washington.

See Supplemental Information for more details on cell identification.

Visual Stimulation

Visual stimuli were designed using MATLAB (MathWorks) and the Psycho-

physics Toolbox and delivered through an OLED monitor (eMagin) focused

on the photoreceptor outer segments. All light-driven responses were re-
corded at a background generating approximately 50 rhodopsin isomeriza-

tions/rod/second. To probe direction selectivity of ooDS cell pairs (Figures

1, 3, 4, and 5), stimuli were centered midway between the two somas

and �100% contrast bars were swept through their receptive fields. Bars

were 120–180 mm wide (perpendicular to the axis of motion) and moved

�850 mm/s on the retina (except two cell pairs: 575 mm/s).

Information Calculations

To compute the information content of the model ooDS cell populations (Fig-

ure 6) and the larger model populations (Figures 7 and 8), we used the linear

Fisher information. This is a fairly standard way to quantify neural population

codes (Averbeck, Latham, and Pouget, 2006; Hu et al., 2014; Beck et al.,

2011), and it determines the precision with which the neural activities can be

decoded to recover the stimulus. Mathematically, the Fisher information

uses the vector of tuning curves (where, for a given stimulus angle q, each

element of the vector is one neuron’s mean firing rate), and the covariance

matrix S(q) of the trial-to-trial variability in response to stimulus q. The Fisher

information I(q) is then calculated as

IðqÞ=dfðqÞ��!T

dq
SðqÞ�1dfðqÞ

��!
dq

: (1)

For our information calculations, I(q) was computed formany different stimuli

(500 for the data in Figure 6; 100 for the data in Figure 7) uniformly spanning the

range of [0, 2p], and the reported information quantities are averages over all

such stimuli.

Model Containing Stimulus-Dependent Correlations

For the data shown in Figure 7, we generated the neural tuning curves via Von

Mises functions (as in Ecker et al., 2011; Hu et al., 2014) and assumed Poisson

variability (vector of spike count variance equal to vector of mean spike counts

given by tuning curves f(q)). The correlation coefficient between cells i and j

was assumed to follow the functional form

rij = aij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðqÞfjðqÞ

q
;

aij = rmax

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxqðfiðqÞÞmaxqðfjðqÞÞ

q ��1

; (2)

where the maxq(.) operation selects the peak amplitude of the tuning curve.

This function ensures that the correlation coefficient varies between 0 and 1,

and increases with increasing geometric mean firing rate (as in our experi-

mental data).
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