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Introduction
External stimuli trigger electrical activity in the nervous

system’s sensory receptors such as photoreceptors in the

eyes, hair cells in the cochlea, and mechanoreceptors in

the skin. This electrical activity causes action potentials

in projection neurons that bring information about the

sensory stimulus to the central nervous system, triggering

further action potentials as the signal ascends the sensory

processing hierarchy. A fundamental problem in neuro-

science is determining the language of this signalling: to

identify how external stimuli are represented by the

patterns of action potentials they evoke.

How do we tackle the challenge of understanding neural

population codes within the sensory systems? This effort

consists of two main approaches. First, experiments are

conducted where sensory stimuli are presented to an

animal or person while the corresponding patterns of

neural activity are recorded with electrical or, optical

methods (e.g., Figure 1). Second, models are constructed

that attempt to simulate the activity of neuronal popula-

tions in response to some set of external stimuli: among

those models are the traditional tuning curve plus noise
models [1–6], and the rapidly-advancing deep learning [7,8]

models from the field of artificial intelligence. Within

these models, researchers can perturb different aspects of

the neuronal population responses to stimuli, and relate
Current Opinion in Neurobiology 2019, 58:30–36 
those perturbations to the system’s ability to represent

and/or process sensory information.

In this review, we summarize some key insights from

this recent body of work and attempt to identify key

challenges and opportunities for future studies of neural

population coding. We focus mainly – though not exclu-

sively – on studies of the visual and somatosensory

systems, but note at the outset that many of the insights

likely apply to other modalities.

Stimulus-dependence of inter-neural
correlations matters
Over repeat presentations of the same stimulus, sensory

neurons usually show highly variable responses [10]

(Figure 1). Because the brain must infer and act on stimuli

on single trials (i.e., without averaging responses over trials),

this variability has the potential to corrupt the brain’s sensory

representation. This issue leads many researchers to ask how

the brain forms reliable sensory representations out of

seemingly-unreliable components. Older research showed

that, when the variability (“noise”) is correlated between

neurons, it can–dependingonthespecificsofwhichneurons

are positively or negatively correlated – have much less

impact on the neural code than would noise that was

independent between neurons [1–5,11–13]. The key intui-

tion is that the geometrical relationships between the neu-

rons’ tuning (stimulus-induced changes in mean firing rate)

and the noise correlation structure determines whether the

correlations mitigate or exacerbate the impact of noise onthe

population code (Figure 2).

Noise correlations are defined separately for each specific

stimulus and neuron pair, and for a given neuron pair can

differ substantially between stimuli [14��, 15��, 17�, 18].

Nevertheless, older studies tended to simply average noise

correlations over stimuli, and to study computational mod-

els in which a single (stimulus-independent) noise correla-

tion coefficient was assigned to each cell pair [1–3]

(although see Ref. [6] for an exception). Recent work shows

that stimulus dependence of noise correlations can dramat-

ically alter their impact on population coding: two groups

recently showed that the stimulus dependence of noise

correlations between direction selective retinal ganglion

cells can double the amount of stimulus information

encoded in the population responses, compared with popu-

lations of uncorrelated neurons [14��,15��]. When stimulus

dependence of correlations was artificially removed from

the ganglion cell populations, nearly all of this population

coding benefit was lost [14��]. This effect arises because the

stimulus-dependent correlations between ganglion cells
www.sciencedirect.com
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Figure 1

In vivo visual neuroscience experiment. A monkey was shown images while the spiking activity of roughly 100 neurons were simultaneously

recorded in primary visual cortex (V1; data from Ref. [9]). Activity of one neuron is shown for 20 repeated presentations of the seastar image; ticks

indicate times at which the neuron emitted spikes. Inter-trial variability in the response is substantial, posing the question of how the brain forms

reliable sensory representations with such variable neuronal units.
“shape” the noise so that it is more separable from the

underlying stimulus-driven signals, similar to the cartoon in

the left panel of Figure 2. Another recent study [16��] asked

which patterns of correlation between neurons cause the

worst corruption of the population code by neural variabil-

ity, as quantified via Fisher information. They found that

Fisher information increases without bound as the neural
Figure 2

Stimulus-dependence of correlations matters. Cartoon depicts the neura

neuron on a single stimulus presentation trial. Within that space, one can pl

these stimulus-conditioned response distributions are shown as ellipses. Th

that stimulus. The ellipse boundaries are the distributions’ 1-standard-devia

correlations between neurons. Four such distributions are shown, under two

the mean firing rates for all possible stimuli is known as the signal manifold

ellipses have their long axes orthogonal to the green curve: this minimizes t

differentiate between similar stimuli based on the neural responses. Becaus

this orthogonality requires that the ellipses have different orientations: the c

selective ganglion cells in retina have stimulus-dependent correlations with 

shown, but now the ellipses have their long axes parallel to the signal curve

the ability to differentiate between similar stimuli based on the neural respo

correlations) also depend on the stimulus [16��].

www.sciencedirect.com 
population size increases, with any type of correlation

between neurons, except for one important exception.

That exception, dubbed differential correlations arises when

the neural variability exactly mimics the stimulus-induced

changes in mean neural firing rates (Figure 2, right panel).

In that case, there is no way for a decoder to separate the

“signal” from the “noise”, and the Fisher information
l response space: each axis in this space is the firing rate of a single

ot the distribution of neural firing rates in response to a single stimulus;

eir centers indicate the mean firing rates of all neurons in response to

tion probability contours, and their orientations depend on the

 different conditions (left, and right). The line, or surface, connecting

: here it is shown as a single curve for simplicity. In the left panel, the

he overlap between neighboring ellipses, maximizing the ability to

e the curve has different orientations at different positions, maintaining

orrelations between neurons must depend on the stimulus. Direction-

this property [14��, 15��]. In the right panel, the same signal curve is

. This maximizes the overlap between neighboring ellipses, minimizing

nses. In this worst-case scenario, the correlations (known as differential
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Figure 3

Untuned neurons matter. (a) The tuning curves of two neurons are shown: these depict the mean firing rate of each neuron in response to stimuli

moving in different directions (defined by their direction angle). Cell 1 is untuned: it has the same firing rate for all stimuli. Cell 2 is tuned. (b)

Stimulus-conditioned response distributions, indicated by the 1-standard-deviation probability contours, for this two-cell population, in response to

three different stimulus directions (indicated by arrows in panel A). These were obtained by assuming Poisson variability (variance in each neuron’s

firing rate equal to the mean), and a positive correlation between the two neurons. In the two-dimensional response space, the distributions have

minimal overlap, meaning that the different stimulus directions can be differentiated based on the neural responses. If one ignores the untuned

neuron, and looks only at the firing rate of the tuned one, these two-dimensional distributions are instead replaced by the one-dimensional

projections shown on the right vertical axis. (Stimulus-conditioned distributions of Cell 2’s firing rate). Those distributions overlap significantly,

indicating that it is hard to tell, based on Cell 2’s firing rate alone, which stimulus direction is present. A similar geometrical configuration arises in

higher dimensions (i.e., with more than 2 neurons).
saturates as the population size increases. Differential

correlations are stimulus-dependent.

Thus, several recent studies highlight the need for our

understanding of the neural code to account for the

stimulus-dependence of correlations between neurons.

Neurons with stimulus-independent firing can
still contribute to population codes
Older work in sensory neuroscience focused exclusively on

neurons whose firing rates vary as the stimulus changes (i.e.,

ones with some tuning), tacitly assuming that any neurons

without tuning did not contribute to the sensory neural

code. Recent papers challenged this assumption, showing

that even neurons with zero stimulus-dependence to their

firing rates can contribute to the population code: popula-

tions consisting only of the tuned neurons contain less

stimulus information than do mixed populationscontaining

both the tuned and the untuned cells [19, 20��, 21�].
Crucially, this result arises even in pure rate codes, and

does not rely on spike timing information.

The key idea is that, because noise is correlated over the

neural population, untuned neurons’ activity levels carry

information about trial-specific firing rate deviations

(“noise”) in tuned cells. Accordingly, observing untuned

cells enablesthosedeviations tobeestimated and subtracted

from tuned cells’ firing rates, which is equivalent to making

them less variable. This effect is shown geometrically in the

cartoons in Figure 3.
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Relatedly, a recent machine-learning study investigated

units within artificial neural networks (ANNs) trained for

object recognition tasks, whose activations had varying

levels of selectivity for the object category [22]. Ablating

the least category-selective units within the ANN pro-

foundly negatively impacted the network’s ability to cor-

rectly identify images. Within the ANNs, there is no

“noise” per se (as in the biological networks). However,

within each object category, there are large variations in

luminance, pose, etc., that act as effective “noise” corrupt-

ing the object categorization task. The importance of these

category-unselective units thus likely has similar origins to

the role of untuned neurons in the biology: the category-

unselective units may track the confounding variables in a

manner that better allows downstream units to account for

their effects on the category-selective units’ activations.

These works emphasize the need to consider how popula-

tions of neurons work together to form sensory codes;

neurons that would on their own not convey any information

(e.g. untuned ones, or category-unselective ones) can serve

to make the overall population code more effective. Every

neuron probably matters, and none should be ignored.

Information propagation vs information
content put different constraints on
population codes
Canonical population coding studies used information the-

ory [23] toquantify howwell the neuralpopulation responses

in a given neural population – e.g. in retina – could be
www.sciencedirect.com
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decoded to identify the stimulus presented to the animal;

these include experimental studies [14��, 15��, 17�,24,25],
and theoretical ones [1–6,26,27]. A shared key assumption is

that high information content corresponds directly to high

performance of the sensory neural population code.

One recent study asked instead how well information in a

peripheral neural population could propagate through

potentially noisy and nonlinear downstream circuitry

[28��], as in a multi-layer feedforward neural network.

Critically, that work found that neural codes optimized

for information content at the periphery, and those opti-

mized for the ability of information to propagate, could be

very different: information robustness and information

content put different constraints on the population code.

This means that the “raw” information content at the

periphery may not be the best metric by which to evaluate

neural population codes, and that instead future studies

should perhaps ask how much of the information from the

periphery makes it through the multiple layers of proces-

sing that exist downstream.

Population codes can multiplex spike timing
and firing rate information in potentially
context-dependent ways
When it comes to understanding how neuronal popula-

tions represent the outside world, one has to ultimately

consider what aspect of the spike trains are relevant for

transmitting information along the neural processing

pathway. The overwhelming focus in this respect has

been on the rate code, where stimulus information is

encoded by how intensely a neuron fires over relatively

long timescales [29]. The focus on rate coding is sensible

given its simplicity and the pervasiveness of correlations

between sensory variables and neuronal firing rates.

However, rate codes ignore extra information that can

potentially be embedded in the temporal structure of

action potentials. Such temporal codes, which can take

various forms (see Ref. [30] for details), can carry signifi-

cant information about sensory stimuli at various levels of

the neuroaxis and in various modalities, including touch

[31–35] and vision [36–41].

Determining which parts of the nervous system use rate

or temporal codes when encoding a given stimulus prop-

erty is an important and active area of research in all

sensory modalities. In general, definitive evidence for any

particular code remains elusive. Even in the classical

example of motorneurons, where rate codes have been

heavily assumed, recent work shows that action potentials

can influence behavior on the millisecond timescale

[42��]. Indeed, rate and temporal codes have often been

presented as competing concepts, the goal being to

directly establish that a favored neural code is better at

encoding a particular stimulus parameter in some brain

area. This intense debate has recently given way to

an appreciation that rate and temporal codes can readily
www.sciencedirect.com 
co-exist, permitting the nervous system to multiplex

complementary information along the same neural pro-

cessing pathway [43–46].

For example, neurons in the cerebral cortex nominally

unresponsive to auditory stimulation - in the sense that

they do not change their firing rate after stimulus onset -

can robustly encode task-relevant stimuli and predict

animal behavior in their inter-spike intervals, strong evi-

dence of temporal coding in the auditory processing

pathway [47�]. However, selectively removing only these

unresponsive neurons or responsive neurons (those that

carry stimulus and decision information in their firing

rates) from the overall population decreases performance

less than removing the same number of neurons drawn

randomly from the two populations, suggesting that there

exists an interaction between rate and temporal codes

that has a synergistic effect on animal behavior. Multi-

plexing may also allow different downstream targets to

read-out specific aspects of the same sensory input. For

example, recent work in touch has shown that orientation

acuity during hand control is nearly an order of magnitude

better and faster than orientation acuity measured in

classical psychophysical paradigms [48��]. These behav-

ioral findings must arise from the same peripheral neu-

rons, which can signal edge orientation both in terms of

rate and temporal codes [32]. One simple idea, as yet

untested, is that different downstream targets read out

rate codes, and temporal codes to support perception and

hand control, respectively.

At the end of the day, the nervous system does not know

about rate codes and temporal codes in any explicit way.

Information processing and transmission happens via

synapses and network dynamics that demonstrate various

integration time constants [49]. Where there are longer

time constants (at NMDA receptors, for example) neural

elements tend to integrate over many spiking events and

thus the resulting signals appear more rate-like. And where

there are shorter time constants (at AMPA receptors, for

example) neural elements will tend to integrate across

temporally coincident spikes and thus the resulting signals

will better maintain spike timing information. Moreover,

neuromodulatory effects can alter the timescale of integra-

tion of neurons and/or networks to instantiate contextual

shifts in how stimulus information is coded suggesting not

only that multiple neural codes can be multiplexed but that

this process may be controlled in a task-dependent manner

[50,51]: under different contexts, a given circuit could

extract either the rate-coded, or the timing-coded informa-

tion present in its afferents.

Deep learning adds a powerful new addition to
our research toolbox
In the past decade, machine learning algorithms, called

deep artificial neural networks (ANNs), that loosely

mimic the mammalian visual cortical hierarchy, have
Current Opinion in Neurobiology 2019, 58:30–36
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transformed the field of computer vision [7]. More

recently, neuroscientists have turned to these models

to help understand sensory processing in the brain. Some

of that work has used ANNs as theoretical abstractions to

describe multi-stage information processing, akin to that

which takes place in the brain. We have discussed a few of

these examples above, including work that used ANNs to

study how noise affects information propagation [28��]
through multi-layered circuits, or how untuned neurons

might contribute to object categorization [22].

Another promising approach has been to train the ANNs

to perform tasks that an animal might encounter, like

identifying the objects in visual scenes [8,52,53], or

features in tactile stimulus patterns [54�], and then com-

paring the representations of sensory inputs in these

trained ANNs to those observed in neural recordings.

This line of work shows that, as ANNs improve at object

recognition tasks, the way they represent the inputs

becomes more similar to those of the primate sensory

cortex [52]. Recent results suggest that these task-opti-

mized ANNs form more accurate models of monkey V1

than do data-driven models that are directly optimized as

visual cortical models [55�] by fitting the models to neural

data. In other recent work the data-driven models out-

perform visual task-optimized ones in mimicking the

responses of V1 neurons to natural image stimuli [56�].
Comparisons between studies are somewhat difficult

owing to differences in the stimuli presented to the

animals, differences in task conditions (e.g., passive fixa-

tion vs. active behavior vs. anaesthetized animals), and

differences in the optimization procedures used to train

the ANN models. A key open question is thus whether

and when task-optimized ANNs form the best models of

sensory neural circuits, and whether and when incorpo-

rating neural data directly in training the ANNs yields

better models.

Despite this challenge, ANN models have already

demonstrated their potential to help identify the visual

features to which neurons respond: most simply, one

takes an ANN model that is trained to respond to natural

images very similarly to how a V1 neuron does, and

“inverts” that model to identify the visual feature(s) that

drive high predicted firing rates [56�,59��]. This approach

could be especially useful for deeper parts of the visual

hierarchy, like areas V2 and V4, in which neurons respond

to highly complex image features, and in highly nonlinear

ways [57,58,60��].

Alternatively, one can train multi-layer ANNs to repro-

duce the responses of neurons several synapses away from

the sensory receptors (e.g., retinal ganglion cells), and

then use the response properties of units in the interme-

diate layers of the ANN to understand the processing

performed by neurons that are “between” the receptors

and the the observed neurons (e.g., bipolar cells) [61�].
Current Opinion in Neurobiology 2019, 58:30–36 
This approach has the potential to help understand the

function of neurons, like retinal bipolar cells, that can be

difficult to access in neurophysiology experiments.

Future outlook: translational implications and
key challenges
A strong motivation behind our research efforts is the fact

that a thorough understanding of the neural code will

enable novel treatments for those with sensorimotor

deficits. For example, with sufficient information about

the visual neural code images could be translated into the

appropriate patterns of visual cortical neural activity,

which could then be “written into” the visual cortex

via high-density electrode arrays or optical methods,

thereby restoring sight to blind people [62]. Similarly,

with sufficient information about the somatosensory neu-

ral code, a robot’s joint configuration or the surface

properties of the object it is touching could be written

into the somatosensory cortex, thereby improving the

performance of brain-machine interfaces used by tetra-

plegics [63]. The recent advances described in this review

could facilitate the development of these next-generation

prosthetics, and machine learning is likely to be especially

important for the creation of “stimulus to brain” transla-

tion algorithms [56�]. Along with providing assistive

technologies for those with sensory impairments, these

prosthetics are likely to revolutionize our understanding

of the neural code, because they will enable experiments

in which people report their subjective experience, in

response to different patterns of neural activity stimu-

lated within their sensory neurons.

Achieving these translational outcomes is likely to require

us to go beyond correlative descriptions of sensory infor-

mation coding, and to instead obtain causal ones: instead

of describing the neurons that spike when a given stimu-

lus is present (and assuming that their firing represents

the stimulus), we may need to determine how neurons’

spiking causes an internal representation of the stimulus to

be formed [64]. Moreover, while much of this essay

describes neural population codes as static mappings

between represented stimuli and neural firing rates, or

inter-spike intervals, recent work highlights the possibil-

ity that the dynamics of the population responses could be

a key – and much less thoroughly studied – feature of

neural population codes [65,66]. Addressing these issues,

of causality, and dynamics, is likely to yield substantial

advances in our understanding of the language of the

brain, and our ability to use that knowledge to help those

with sensorimotor deficits.
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