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Simple stimuli have been critical to understanding neural population codes in sensory systems. Yet it remains necessary to
determine the extent to which this understanding generalizes to more complex conditions. To examine this problem, we
measured how populations of direction-selective ganglion cells (DSGCs) from the retinas of male and female mice respond to
a global motion stimulus with its direction and speed changing dynamically. We then examined the encoding and decoding
of motion direction in both individual and populations of DSGCs. Individual cells integrated global motion over ;200ms,
and responses were tuned to direction. However, responses were sparse and broadly tuned, which severely limited decoding
performance from small DSGC populations. In contrast, larger populations compensated for response sparsity, enabling
decoding with high temporal precision (,100ms). At these timescales, correlated spiking was minimal and had little impact
on decoding performance, unlike results obtained using simpler local motion stimuli decoded over longer timescales. We use
these data to define different DSGC population decoding regimes that use or mitigate correlated spiking to achieve high-spa-
tial versus high-temporal resolution.
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Significance Statement

ON-OFF direction-selective ganglion cells (ooDSGCs) in the mammalian retina are typically thought to signal local motion to
the brain. However, several recent studies suggest they may signal global motion. Here we analyze the fidelity of encoding and
decoding global motion in a natural scene across large populations of ooDSGCs. We show that large populations of DSGCs
are capable of signaling rapid changes in global motion

Introduction
Sensory systems encode and decode information across popula-
tions of neurons. Understanding such population codes is funda-
mental to understanding the function of neural circuits and
sensory processing (Pouget et al., 2000; Panzeri et al., 2015).
Population codes are likely optimized for natural sensory stimuli
but they are often probed using simple and artificial stimuli
(Felsen et al., 2005; Fitzgerald and Clark, 2015). Such simplifica-
tions may limit an understanding of population codes and neural

function in ethological contexts. In this article, we examine a ca-
nonical population code, direction coding in mammalian ON-
OFF direction-selective ganglion cells (ooDSGCs), in the context
of global motion of a natural scene.

In the mammalian retina, there are four types of ooDSGCs,
each tiling space with their dendritic and receptive fields (Barlow
et al., 1964; Devries and Baylor, 1997; Demb, 2007; Vaney et al.,
2012; Morrie and Feller, 2016). These types differ primarily in
their preferred direction of motion, which are organized along
four cardinal axes (Oyster and Barlow, 1967; Vaney, 1994; Kay et
al., 2011; Trenholm et al., 2013; Yao et al., 2018). Direction is
encoded across the four types by their relative firing rates. This
produces a population code for direction that is relatively invari-
ant to object speed and contrast (Nowak et al., 2011; Zylberberg
et al., 2016). ooDSGCs have been largely considered responsible
for signaling local motion, because global motion attenuates (but
does not eliminate) their responses (Vaney et al., 2001; Chiao
and Masland, 2003; Olveczky et al., 2003; Hoggarth et al., 2015).
A separate class of DSGCs, so-called ON DSGCs (oDSGCs), are
minimally attenuated by global motion, and have thus been
assumed to play a dominant role in signaling global motion
(Oyster, 1968; Simpson et al., 1988). Correspondingly, previous
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studies examining the fidelity and accuracy of the ooDSGC pop-
ulation code have focused on local motion and artificial stimuli
that are decoded at relatively long timescales (Fiscella et al., 2015;
Zylberberg et al., 2016). These studies largely pointed toward a
high-fidelity code that utilizes correlated activity in nearby
ooDSGCs to signal the direction of local motion. However,
recent work indicates that ooDSGCs may be organized to encode
self-motion, a global motion signal (Kay et al., 2011; Dhande et
al., 2013; Sabbah et al., 2017). This motivates an examination of
ooDSGC individual and population responses under conditions
in which the stimulus is a natural scene moving globally and
dynamically on the retina. It also motivates understanding how
the direction of global motion can be decoded from populations
of mammalian DSGCs and the extent to which concepts applica-
ble to decoding local motion at long timescales apply to decoding
global motion at shorter, and perhaps more behaviorally rele-
vant, timescales.

To study DSGC responses, we recorded simultaneously the
spiking activity from hundreds of retinal ganglion cells (RGCs)
using a large-scale multielectrode array (MEA). We distin-
guished DSGCs from other RGCs based on their responses to
drifting gratings (Elstrott et al., 2008; Yao et al., 2018). We then
projected dynamically moving natural images onto the retina:
the motion is “dynamic” because the direction and speed are not
constant. Individual ooDSGCs and oDSGCs exhibited similar
encoding of dynamic global motion stimuli: they both integrated
and low-pass filtered direction signals over a timescale of
;200ms; they were both broadly tuned; and they both exhibited
similar spike rates. Importantly, both ooDSGC and oDSGCs
exhibited little trial-to-trial variability in their responses to
dynamic global motion, indicating that while the responses were
sparse, they were reliable.

We then used our more complete populations of ooDSGCs to
examine the limitations inherent in decoding dynamic global
motion signals from small and large ooDSGC populations. For a
local quartet of ooDSGCs (each with a different preferred direc-
tion), determining the direction of global motion was marginally
better than chance at short timescales (;100ms). Decoding ac-
curacy was improved by longer temporal integration of ooDSGC
signals, however this is only an effective decoding strategy when
changes in motion direction are infrequent and when the animal
does not need to rapidly respond to a change in the motion sig-
nal. When motion direction changes frequently, large popula-
tions of ooDSGCs are needed to accurately and rapidly
(,100ms) decode the direction of global motion. Large popula-
tions of ooDSGCs are available for decoding at no cost to spatial
resolution because the nature of the motion signal is global.
Furthermore, the short integration times used when decoding
large populations result in largely uncorrelated population activ-
ity, which is counter to previous results decoding local motion at
long timescales (Franke et al., 2016; Zylberberg et al., 2016). This
limits the impact of correlated spiking on decoding accuracy in a
dynamic global motion context. Thus, large populations of
nearly-independent ooDSGC signals integrated over short time-
scales enables rapid decoding of global motion.

Materials and Methods
Experimental design and statistical analysis
Retinas were removed and recorded from C57BL/6J and CBA/CaJ x
C57BL/6J mice between the ages of onemonth and one year. The strains
and sexes showed no differences to the results reported in this study;
thus, data were pooled. 21 Animals were used and data from 10 animals
(four male and six female) were used in this manuscript. Data were

selected based on measurement stability (,10% change in spontaneous
activity and sensitivity) over the duration of the experiment. All statisti-
cal tests and associated information (e.g., p values) are noted where
appropriate in the text. Mice were used in accordance with the Duke
University Institutional Animal Care and Use Committee.

Retina dissection
Retina dissection was optimized to maintain response sensitivity. Mice
were dark-adapted overnight, euthanized via decapitation, eyes were
enucleated, and a piece of retina (;1–2 mm2) was isolated from the pig-
mented epithelium (Yao et al., 2018). Retina isolation was performed in
Ames solution (room temperature) bubbled with 95% O2 and 5% CO2.
All procedures were performed in the dark under IR light. The retina
was isolated from the dorsal half of the eye (identified from vasculature)
to increase the fraction of M-opsin expressed in the cones for better
overlap with the spectrum of the visual display.

MEA recording, spike sorting, cell position determination
Electrical activity was measured from RGCs on a MEA (Fig. 1). Spikes
were identified, sorted into individual cell clusters, and soma positions
on the MEA were estimated as previously described (Litke et al., 2004;
Yao et al., 2018). Electrical activity was measured from RGCs using a
hexagonal large-scale MEA, which was;490mm along an edge with 30-
mm spacing between 519 electrodes (Field et al., 2010). Retinas were held
against the MEA with a permeable membrane and were perfused with
Ames solution (34°C) bubbled with 95% O2 and 5% CO2.

Electrical activity was analyzed offline to identify and sort spikes into
individual cell clusters (Shlens et al., 2006). Briefly, on each electrode,
spikes were identified by a voltage threshold and voltage waveforms
were concatenated across the six surrounding electrodes. These con-
catenated waveforms were parameterized with principal components
analysis (PCA) and clustered with a mixture of gaussians model, provid-
ing putative cell assignments. Putative cells were analyzed if their spike
time autocorrelation showed ,10% refractory period violations and
,25% spike time correlation with a cell identified on a nearby electrode,
indicating spikes were from a single and uniquely identified neuron.

Soma position on the array was used to identify quartets (Fig. 2) and
pairwise distances between cells (Fig. 3A). Soma position was estimated
from the electrical image (EI) on the array (Li et al., 2015; Yao et al.,
2018). The EI consisted of the average voltage on each electrode preced-
ing a spike (Petrusca et al., 2005; Field et al., 2009). The position of the
soma was taken as the center of mass of the EI.

Visual stimulus
The retina was stimulated at photopic light levels (8000 Rh*/s) with a
g -corrected OLED display (SVGA1XL Rev3 from eMagin). Three types
of visual stimuli were presented to the retina and controlled via custom
software written in MATLAB using the MGL library (https://gru.
stanford.edu). First, drifting gratings, at two different temporal frequen-
cies, were used to identify ooDSGCs (see below, RGC classification).
Second, natural images, taken from the van Hateren image database
(van Hateren and van der Schaaf, 1998), were presented to probe RGC
responses to global motion in natural images. The original images in this
database spanned ;25.6� 17.1° of visual angle and were 1535� 1024
pixels. During presentation in these experiments, an aperture of
400� 400 pixels was used to display the image to the retina. The optics
of the microscope generated a scale factor between pixel size and
microns of 4mm/pixel. Thus, the apertured images covered an area of
1.6� 1.6 mm, or ;48� 48° of visual angle on the retina (given ;30° of
visual angle per 1 mm in mouse retina). This corresponded to a magnifi-
cation factor of;4� between the original images and their presentation
on the retina. Natural images were presented in two different stimulus
protocols; using either dynamic or static velocity. Finally, natural movies
from a camera mounted to the head of a mouse (from the lab of Thomas
Mrsic-Flogel) and a cat (Betsch et al., 2004) were used to further test
response sparsity (Fig. 1Eii, movies 1 and 2, respectively).

In the dynamic velocity protocol, the same image was presented in
the same orientation on every frame. The average frame rate was 40Hz
(;25ms/frame). As noted above, a 400� 400 pixel region (aperture)
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was used to display a portion of the image to the retina. The initial posi-
tion of the image was centered with respect to the aperture. This position
was considered (0,0) in an (X,Y) coordinate system. Subsequent image
positions shifted the portion of the image that was displayed through the
mask. These positions over time, X(t) and Y(t) were produced by sam-
pling from two Gaussian distributions (both with mean=0 and SD=100
pixels). These samples were then smoothed by time averaging over a
sliding window of 100 frames. This operation caused the X-Y positions
of the image to be correlated in time. However, the changes in position
over time, DX(t) and DY(t), were uncorrelated at temporal frequencies
above 0.5Hz and were normally distributed. The SD of the distribution
of these displacements [DX(t) and DY(t)] was ;20mm, corresponding
to ;800mm/s along a single axis. If the edge of the original image ever
reached the edge of the aperture, the edge of the image was prevented on
the next frame from entering the aperture, restricting the image to either
remain stationary along that direction or to move away from the aper-
ture on subsequent frames. In practice, these events occurred rarely in
our experiments and did not perturb the statistically independent image
displacements over time. A single dynamically moving image was pre-
sented for 60min.

In the static direction protocol, the image was drifted in a single
direction at ;1080mm/s for ;4 s before a new direction or image was
presented. The image was reoriented for each direction with its longer
edge parallel to the direction of motion. Six different images were pre-
sented at eight different directions, spread equally across 360°.

RGC classification
oDSGCs and ooDSGCs were identified based on their responses to
square wave gratings (960mm/cycle) drifted in eight different directions
and two different speeds (1.0 and 0.25 Hz). Responses to each grating
were quantified by total spike number generated during the 8 s each gra-
ting was presented. Cells were first clustered as DSGCs, then separated
as ON-OFF and ON cells, and then grouped by their preferred direction
(Yao et al., 2018). Direction-selective cells were clustered by their

direction-selective indices (DSIs; Ravi et al., 2018) at each grating speed
using a 2-dimensional Gaussian mixture model. This method avoided set-
ting an arbitrary threshold on DSI. Cells were then clustered by hand
using the ratio of their response vector magnitudes for fast and slow gra-
tings. Cells that maintained or increased their vector magnitudes for faster
gratings were identified as ON-OFF. This process is based on the speed
tuning curve differences between ON and ON-OFF DSGCs in mouse ret-
ina (Yao et al., 2018). Finally, ooDSGCs were clustered by hand based on
the direction of their vector sum. Clustering by their preferred direction
was only used to color code Figure 1C and did not contribute to decoding
(see below, Optimal linear and optimal quadratic estimators).

Optimal linear and optimal quadratic estimators
An optimal linear estimator (OLE) and optimal quadratic estimator
(OQE) were used to estimate the direction of stimulus motion from a set
of RGCs responses (Figs. 2, 3, 4) (Salinas and Abbott, 1994; Shamir and
Sompolinsky, 2004). To do this, the OLE and OQE weight and sum the
responses for each RGC:

d̂ ¼~r t1dtð Þ pW; (1)

d̂ is a 2-dimensional vector consisting of X-Y displacements, from
which a direction and magnitude were calculated: the direction is the
estimated direction, and the magnitude can be thought of as the strength
of evidence for this estimate. For the OLE, RGC responses,~r, were quan-
tified by the number of spikes within a set number of sequential frames
(bins) as indicated by the temporal integration time;~r includes an added
constant that allows for a default (offset) direction weight. For the OQE,
~r includes not only responses of individual cells but also the cross prod-
ucts of all possible cell pairs (Shamir and Sompolinsky, 2004); dt allows a
time delay between response and the stimulus and was optimized to
minimize the mean squared error between the direction estimate and
the true direction. The weights, W, were determined during a separate
training set using MATLAB’s backslash operation:
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Figure 1. DSGCs integrate the direction of global motion over time and respond sparsely with broad tuning to natural images. A, Natural image presented (top) and displaced according to
DX and DY (bottom). Yellow scale bar: 400 monitor pixels, 1.6 mm on retina. B, STA of DX and DY for single example ooDSGC and an oDSGC (inset). C, Direction (Ci) and magnitude (Cii) of
motion calculated from STA for all ooDSGCs in a single retinal recording. Color coded according to preferred direction from grating stimulus. Inset to Cii, Distribution of image displacement
velocities filtered by the ooDSGC STAs on a log scale (gray bars, left axis) and the static nonlinearities associated with each ooDSGC input-output relationship on a linear scale (solid curves, right
axis). D, Spike times during 5 s of dynamic global motion stimulus for all ooDSGCs in a single retinal recording; color indicates preferred direction (see inset) determined from drifting gratings.
Inset shows direction preferences in visual coordinates (S: superior; P: posterior). E, Probability distributions for DSGCs in a single retinal recording using a jittered image (Ei) and for ooDSGC
and oDSGCs in two different retinal recordings using two different jittered images and two different natural movies (Eii). Movies included video from a camera mounted on a mouse (movie 1)
and a cat (movie 2). F, Spike raster of a single ooDSGC (Fi) or oDSGC (Fii) simultaneously recorded over several repeated presentations of the same jittered image. G, Gray bars show the distri-
bution of the difference between preferred direction from STA (panel Ci) and the direction of motion ;100 ms (peak of STA) preceding each spike. Histogram includes data from all ooDSGC
cells and all spikes from a single retina (n= 49 RGCs). Red bars show a similar distribution, but the direction preceding the spike is calculated by convolving the stimulus by the temporal
weighting function of the STA (panel Cii). Similar results were observed in a second retinal recording. The inset shows the same analysis for all oDSGCs in the same recording.
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W ¼~rðt1dtÞnS; (2)

S is the cartesian coordinates of the stimulus direction.
MATLAB’s backslash operation returns a least-squares solution to a
system of linear equations. Training sets for the dynamic motion
stimulus consisted of the first ¾ time points, and it was tested on the
last ¼ time points. Training and testing on fully separated data
blocks prevent the decoder from leveraging the peri-stimulus time
histogram (PSTH) autocorrelation to improve its test error. For the
static motion stimulus, the OLE and OQE were trained on five
images and tested on a hold-out image. Training and testing were
redone for each image and errors averaged across all images.

To break correlation structures between cells, binned responses
within the test data for the static direction stimulus were circularly
shifted by a random amount independently for each cell. This manipula-
tion maintained the direction selectivity of the response averages but
broke correlations between cells.

ooDSGC simulation
A simulation of ooDSGC receptive fields was used to test the
observed results in larger and more complete mosaics than available
from the measured data. The model consisted of four independent
mosaics of modeled receptive fields responding to a moving image.
As in the analysis of the measured data, the responses of the mod-
eled neurons were combined to estimate the direction of image
motion.

The response, rðtÞ, of an individual model neuron was produced by
computing:

rðtÞ ¼ N Ff pðx; y; tÞ p sðx; y; tÞ
� �

; (3)

where Ff p, is the linear filter given by

Ff pðx; y; tÞ ¼ cos ðx p cosf 1 y p sin f1c ðtÞÞ p 360=l� �
pmvgð~l;sÞ:

(4)

The parameters of Ff p are the preferred direction, f , and the
spatial position,~l; of the filter. Linear filters were constructed from
a space-time Gabor function using of a set of 10 sinewaves with 150
pixel wavelengths, l; that were phase shifted, c ðtÞ; by 8 pix/frame,
and multiplied by a multivariate Gaussian (mvg) with a SD, s ; of 17
pixels, centered at ~l (the x-y position of the receptive field center)
and cut off in a square 75 pixel window. The stimulus was sðx; y; tÞ; *
indicates convolution; and N is a nonlinear function. The position,
~l, of each filter, Ff p, was determined by an exclusion zone algo-
rithm for generating 2-dimensional spatial mosaics (Galli-Resta et
al., 1999). N was a rectified linear function symmetric about zero
(Fig. 5A), allowing responses to be ON-OFF and controlling
response sparsity by changing the length of the central (flat) seg-
ment of the nonlinear function. The threshold of the nonlinearity
was adjusted to provide a similar fraction of spikes as that measured
in the ooDSGCs population (90–95% of the bins had no activity).
The density of the simulated mosaics was 30 cells/mm2 based on
reported values in ooDSGCs in rabbit (Vaney, 1994). The popula-
tion response from these stimulated responses,~r, was decoded using
the same procedures applied to the data (see Eq. 1).

To understand how high-frequency noise constrained decoding error
we added Gaussian white noise with a variance equal to the signal var-
iance. Decoding was performed on the noisy signals without manipula-
tion or after averaging from 10-frame bins.

Spatial-temporal trade-off simulation
A simulation of signal estimation was used to understand the tradeoffs
inherent in separating signal from noise through spatial and temporal
integration. The signal, S, was constructed by convolving spatial and
temporal Gaussian filters with white noise, creating a signal dominated
by low spatial and temporal frequencies. Unfiltered white noise was then
added to S. Then the noisy signal was filtered by convolving spatial and

temporal Gaussian filters defined by their SDs, s . The mean squared
error was calculated between the filtered output and S.

Results
Visually driven responses of RGCs were measured ex vivo using
a MEA (Yao et al., 2018). Responses to drifting gratings distin-
guished ooDSGCs and oDSGCs from other RGCs over the MEA
(see Materials and Methods). To measure the responses of
DSGCs to dynamic global motion, a natural scene from the van
Hateren image database (van Hateren and van der Schaaf, 1998)
was dynamically moved over the retina (Fig. 1A). This paradigm
drove the responses of dozens of identified and simultaneously
recorded ooDSGCs and oDSGCs.

Individual ooDSGCs encode direction via integration of
dynamic global motion
We begin by focusing on ooDSGCs and analyzing the relation-
ship between their spiking and the dynamic global motion of a
natural scene. We randomly and iteratively translated a natural
scene on the retina while recording ooDSGC spikes (see
Materials and Methods). The X and Y positions of the image
were shifted in each frame of the video display by DX(t) and DY
(t). Image displacements had a Gaussian distribution and were
uncorrelated or “white” at temporal frequencies above 0.5Hz
(Fig. 1A; see Materials and Methods). The image displacement
distribution had zero mean with a SD ;20mm/frame (;25°/s).
This value was chosen to maximize responses from ooDSGCs
and fall within the range of eye movement velocities in freely
moving rats (Wallace et al., 2013) and retinal image motion in
rabbits (Van der Steen and Collewijn, 1984). We calculated the
correlation between DX and DY values and spike times, yielding
a spike-triggered average (STA) of the displacements in X and Y
for each cell (Fig. 1B; Borghuis et al., 2003; Perge et al., 2005;
Kühn and Gollisch, 2019). Translating these Cartesian to polar
coordinates facilitated visualizing the STA directions of all
ooDSGCs simultaneously (Fig. 1C). Approximately 500ms pre-
ceding a spike, the average motion direction fluctuated randomly
for every ooDSGC (Fig. 1Ci). However, between 300 and 100ms
preceding a spike, the motion direction coalesced to one of four
cardinal directions. These results indicate that each ooDSGC
encodes global motion along one of four directions and that
spiking depends on the motion direction over ;200-ms tempo-
ral window, with;100-ms latency to spiking (Fig. 1C).

There are two possible strategies by which ooDSGCs may
encode this motion. First, ooDSGCs may simply integrate
motion signals over a temporal window. Alternatively, they may
signal a change in direction by differentiating the motion trajec-
tory. Differentiation is a common computation performed by the
receptive fields of most RGCs (e.g., center-surround antagonism;
Kuffler, 1953; Perge et al., 2005; Schwartz et al., 2007). From a
linear systems perspective, pure integration requires a mono-
phasic dependence on motion trajectories preceding spikes,
while differentiation (in the case of direction changes .90°)
requires a biphasic dependence on motion trajectories. Every
ooDSGC exhibited a monophasic direction STA (peak/trough
ratios at 14.2 6 2.7; Fig. 1B), with a mean half width of 111 6
2ms (Fig. 1Cii). Thus, ooDSGCs encoding appears more related
to the integration of direction for global motion stimuli within
relatively short time windows preceding their spikes; they do not
appear to explicitly encode changes (differentiation) in the
motion direction. Note, the distribution of velocities preceding
spikes is Gaussian and largely samples a response range for the
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ooDSGCs that is approximately linear with half-wave rectifica-
tion (Fig. 1Cii, inset). Below, we explore the implications of
needing to decode ooDSGC signals that are updated continu-
ously over short (200ms) time windows.

Individual ooDSGCs generate sparse and broadly tuned
responses to global motion
The analyses above reveal the average motion kinetics and direc-
tions that precede ooDSGC spiking for global motion in a natu-
ral scene. However, the fidelity of encoding, and the accuracy of
decoding, will depend strongly on the spiking dynamics elicited
by these stimuli. Spiking was infrequent in ooDSGCs to natural
scene global motion (Fig. 1D,E), consistent with other measures
of RGC activity during natural movie presentations (Koch et al.,
2006). For the global motion stimulus, firing rates ranged from 0.8
to 8.5Hz, with one or more spikes occurring in a single neuron on
,8% of the video frames (40-Hz frame rate). This result was repli-
cated with several different images and natural movies from cam-
eras that were head mounted to animals (Fig. 1Eii; see Materials
and Methods), demonstrating that global motion in natural scenes
typically evokes sparse responses across ooDSGCs.

One question that arises is whether or not these stimuli were
reliably driving spikes in ooDSGCs, given the low spike rates.
Repeated presentations of the same stimulus produced stereo-
typed ooDSGC responses (Fig. 1Fi), indicating that the response
sparsity is not simply a result of presenting a stimulus that is
incapable of evoking a response. Instead, these stimuli generated
sparse responses that were reliable from trial to trial, within each
response frame, the spike count mean was approximately equal
to the variance (mean fano factor 6 SEM=1.1 6 0.05).
However, the motion direction ;200ms preceding individual
spikes was highly variable (Fig. 1G). To quantify the variability in
motion direction preceding spikes, we calculated the difference
between the direction of motion preceding each spike and the
STA direction (evaluated at the peak of the STA magnitude).
This distribution is broad and on average the direction preceding
a spike differs from the mean (preferred) direction by670° (Fig.
1G, gray distribution and black dashed line). Even when the dis-
placement (DX and DY) is filtered by the STA, the distribution
of directions preceding spikes remains relatively broad (Fig. 1G,
red distribution): on average the direction preceding a spike dif-
fers from the mean (preferred) direction by 653° (Fig. 1G, red
dashed line). This variability will limit decoding performance,
because the presence of a spike poorly constrains the preceding
motion direction.

Variability in the prespike direction likely reflects several
sources including: the tuning width of the ooDSGC, different
direction trajectories across video frames filling the ooDSGC inte-
gration time, and aperture effects that allow local orientation to
influence apparent direction within a receptive field (McDermott
et al., 2001; Sung et al., 2009; Kane et al., 2011). Irrespective of the
source, the stimulus variability preceding ooDSGC spiking com-
bined with infrequent spiking, will limit the accuracy with which
direction of global motion can be decoded from ooDSGC popula-
tions. Below we assess whether the response properties described
above are unique to ooDSGCs, or whether these observations also
apply to oDSGCs.

oDSGCs respond similarly to ooDSGCs
Previous work has suggested that signaling self-motion is per-
formed by oDSGCs while ooDSGCs signal local object motion
(Vaney et al., 2001). Thus, we compared the responses of
oDSGCs to ooDSGCs to see whether they exhibited distinct

response properties to global motion in natural scenes. First,
oDSGCs showed similar monophasic temporal integration to
ooDSGCs (Fig. 1B, inset). Second, oDSGCs showed similar
response sparsity to the same global motion stimuli (Fig. 1Ei).
Indeed, all recorded RGCs exhibited similar response sparsity
(Fig. 1Ei). oDSGCs also exhibit similarly reliable responses to
repeated presentations of the same global motion sequence for a
natural scene (Fig. 1Fii) and similar direction variability preced-
ing a spike as ooDSGCs (Fig. 1G, inset). Thus, we did not observe
clear differences in the response statistics or encoding properties
between oDSGCs and ooDSGCs to global motion of a natural
image.

The analyses below leverage the simultaneously recorded
populations of ooDSGCs to test the ability to decode the direc-
tion of global motion from those populations and analyzes the
factors limiting the accuracy of that decoding. We focused on
ooDSGCs because our MEA measurements contain much larger
populations of these cells than oDSGCs.

Quartets of ooDSGCs exhibit limited accuracy in signaling
the direction of global motion
To begin to understand how the response properties of ooDSGC
impact the decoding of global motion, we applied an optimal lin-
ear estimator (OLE) to the responses from quartets of simultane-
ously recorded ooDSGCs. In brief, an OLE assigns a set of weights
to each cell which, when scaled by the response of that cell and
summed across cells, will minimize the mean squared error of the
prediction (Fig. 2A; see Materials andMethods). Each quartet con-
sisted of ooDSGCs with different preferred directions and cells
within 200mm of one another (Fig. 2B). We begin with quartets of
ooDSGCs because they form an elementary unit of a population
code. Specifically, spikes from one ooDSGC poorly constrain
motion direction, because of the broad direction range that can
precede a spike. However, spikes distributed across a quartet of
ooDSGCs can, in principle, be used to more accurately decode
motion direction (Georgopoulos et al., 1986). We begin with an
OLE because it is a simple decoder that performs nearly optimally
on ooDSGC population responses and can be simply imple-
mented by downstream neurons (Salinas and Abbott, 1994;
Fiscella et al., 2015).

The first question we address with this approach is the follow-
ing: “how accurately can global motion in a natural scene be
decoded from the responses produced by a local quartet of
ooDSGCs?” The answer is likely to depend on the duration over
which the decoder integrates signals from the ooDSGCs, and
the dynamics of the motion (e.g., how frequently the velocity
changes). First, we examined the dependence on integration
time. When integration time is short, the decoder is forced to
estimate direction from responses produced within single video
frames (;25ms). This yielded low-accuracy estimates of motion
direction; the median expected error was;80° (Fig. 2C,D). Note
this analysis allows for a latency between the stimulus direction
and ooDSGC responses (see Materials and Methods). The me-
dian error is reported throughout and provides the minimum
error in decoding 50% of the time bins, an appropriate quantity
when decoding continuously. For comparison, chance perform-
ance in direction estimation would be 90°, and perfect perform-
ance would be 0°. A major contributor to this high uncertainty
in motion direction is that within ;25ms, the most frequent
output from the quartet of ooDSGCs is zero spikes (Fig. 2E).
When there are no spikes, the decoder assigns a default constant,
effectively guessing at the direction of motion. It is worth noting
that in a stimulus regime with constantly changing direction, this
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default is no worse than assuming the direction that was last
decoded when spikes occurred.

To test that the high error at short integration times results
from the sparsity of the population response, we analyzed the fre-
quency with which a given number of ooDSGCs responded
within a quartet. For short integration times there is a high prob-
ability of zero spikes from any ooDSGC in the quartet (Fig. 2E).
Furthermore, decoding error depended on the number of cells
responding within a given integration window, the error
decreased sublinearly for increasing cell numbers (Fig. 2F).
Errors were high when four cells were responding in the same
bin, which results from cancelation of oppositely tuned neurons.

One path toward improving decoding performance is for the
decoder to integrate over longer time windows. This would allow
for a larger fraction of decoded epochs to contain at least one
spike from the quartet of ooDSGCs. However, increasing the
integration time to 125ms (five stimulus frames) only modestly
decreased the error of direction estimates to;74°. Furthermore,
for longer integration times, average direction error increased
(Fig. 2D). Thus, decoding global motion from local quartets of
ooDSGCs exhibits limited accuracy.

The increase in decoding error at longer integration times is
likely a result of the dynamic stimulus, which frequently changes
directions. Thus, integrating for longer periods of time incurs a
cost: the inability to decode frequent changes in direction. To
test this hypothesis, we switched from decoding an image that
changed direction and speed dynamically to a drifting natural
image that moved in a constant direction and speed (see
Materials and Methods). As hypothesized, images moved in a
static direction show only increases in accuracy with increasing
integration time (Fig. 2G), as the decoder was afforded the op-
portunity of accumulating spikes over long periods of time

without a change in direction. Using a 2-s integration window to
decode the direction of a drifting natural image reduced the aver-
age error down to ;20° when decoding from a quartet of
ooDSGCs.

The analyses above show that quartets of local ooDSGC pro-
vide little information about global motion direction in a natural
scene at short time scales. Their limited decoding accuracy is
largely due to the sparse (infrequent) spiking generated by the
stimulus. Furthermore, decoding is limited to short integration
times when motion is dynamic because integrating over longer
time windows fails to track changes in motion direction. This is
at least partly a consequence of ooDSGCs integrating, instead of
differentiating, motion (Fig. 1B). If decoding accuracy is limited
by the sparsity of the population response, do larger populations
of ooDSGCs allow for more accurate decoding of dynamic
motion at short integration times?

Large ooDSGC populations can encode direction
continuously over short time scales
To begin to test the effect of ooDSGC population size on decod-
ing global motion, we decoded the direction of dynamic global
motion using the responses of all ooDSGCs measured in an
experiment (Fig. 3A). While these populations are not complete,
due to imperfect sampling of RGCs over the MEA, this analysis
permitted data-based decoding on 43–48 ooDSGCs in individual
experiments. Furthermore, the population spanned lengths of
;750mm (25° of visual arc) on the retina.

Using larger populations of ooDSGCs increases the frequency
with which one or more cells spike for a given integration time,
relative to quartets. This effectively decreases the sparsity of the
population response to which the decoder has access. As a result,
the median error from decoding these larger population
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responses was significantly smaller than decoding ooDSGC quar-
tets, particularly for short integration times (Fig. 3B,C). For
example, at ;25ms (a single video frame), decoding error was
reduced to 55–60° for a population of 48 ooDSGCs, down from
80° for a quartet. It is notable that decoding direction from a
population on a single frame was so accurate, given that a single
frame is much briefer than the integration time of the STA (Fig.
1B).

Similar to the results from ooDSGC quartets, increasing the
integration time also caused an increase in median errors for
larger ooDSGC populations (Fig. 3B,C). This increase is because
the global motion is dynamic, causing the decoder to estimate a
single direction of motion from responses that are produced by
multiple directions. When the direction of the stimulus was con-
stant, longer integration times resulted in a monotonic decrease
in error for large populations of ooDSGCs (Fig. 3D, blue). For
example, at 2-s integration, decoding error fell to ;20° with a
population of 48 ooDSGCs. For comparison, an OLE used to
decode motion direction from equivalently-sized populations
(43 and 48) of non-DS RGCs (recorded simultaneously) per-
formed much worse than ooDSGC populations or even ooDSGC

quartets (Fig. 3D). This demonstrates that despite the somewhat
low precision in estimating direction of global motion at short
timescales, DSGCs provide much more information than other
RGCs. In summary, larger ooDSGC populations allow for more
accurate decoding of global motion in natural scenes within
briefer integration times. However, long integration times limit
decoding performance when global motion changes rapidly.

Thus far, we have shown that long stimulus integration
impairs the ability of ooDSGC populations to accurately estimate
dynamic motion. Long stimulus integration has an additional
cost, which is to delay the time at which direction estimates are
most accurate relative to the stimulus. To measure this delay, we
computed the cross-correlation between the actual and estimated
image displacements (in DX and DY). The cross-correlation
between these values was significantly delayed and broader at
longer integration times (Fig. 3E). Thus, integration over short
timescales allows downstream circuits to decode more rapidly,
thereby following more frequent changes in direction. This is
only achievable with large populations of ooDSGCs because
quartets perform marginally better than chance within the same
integration times.
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Increasing the population size could improve
decoding in two different ways: (1) by increasing
the number of time points with single responsive
cells; and/or (2) increasing the number of time bins
with multiple responsive cells. To measure the
extent to which the error depended on a simultane-
ous multi-cell response, the OLE was trained on the
full response set and tested on either the full
response set, or on a modified response set in which
only a single cell response (the largest response) at
each time bin was provided to the decoder (Fig. 3F).
If direction decoding is entirely mediated by single
cells, then there should be no difference between
using the full and modified response sets. There was
a substantial increase in the error when decoding on
the modified response set in both the dynamic (Fig.
3G) and static (Fig. 3H) direction stimuli. Thus, the
decoding accuracy in larger populations relies on si-
multaneous activity frommultiple ooDSGCs.

The simultaneous activity between ooDSGCs that
underlies a population response could arise purely
through independent responses across ooDSGCs or
through correlated subsets of ooDSGCs. In the next
section, we examine the extent to which the accuracy
of rapid decoding in large ooDSGCs populations
relies on response correlations within the population.

Rapid-global motion direction is encoded by
large populations of independent ooDSGCs
Natural scenes have local intensity correlations that
result in correlated activity between nearby RGCs
(Simoncelli and Olshausen, 2001; Pitkow and
Meister, 2012). Recent work has indicated that such
response correlations promote robust decoding by
maintaining the relative activity between ooDSGCs
with different preferred directions (Franke et al.,
2016; Zylberberg et al., 2016). To what extent are
response correlations important to maintaining the
accuracy of rapid decoding of global motion from
large ooDSGC populations?

To understand how the correlation structure con-
tributes to decoding accuracy, we measured and
manipulated response correlations across the ooDSGC
populations. In this section, we focused entirely on the
static direction stimulus, which permitted manipulations that would
be impossible across a dynamic direction stimulus.

First, we examined the correlation structure in the population by
mapping the pairwise correlation coefficients as a function of
(1) distance between pairs, (2) relative preferred direction, and (3)
integration time (Fig. 4Ai–Aiii). The correlation coefficients were
calculated within a trial and averaged across all trials and directions.
Thus, the response correlations reported here include signal and
noise correlations and measure the tendency of cells to respond to
the same image structure. The correlation coefficient between pairs
of ooDSGCs increases with the integration time used to calculate
the responses, as previously noted (Cohen and Kohn, 2011), short
integration times diminish correlations (Fig. 4A, note axes scale).
Thus, over short integration times, correlations are small, suggesting
they may not influence decoding accuracy to the extent observed in
previous studies that considered longer integration times (Franke et
al., 2016; Zylberberg et al., 2016).

However, for a given integration time, the correlation is
higher for cells that are spatially closer and modulated less

prominently by their relative preferred directions (Fig. 4Ai;
Pitkow and Meister, 2012). This reflects the increased tendency
of nearby cells to respond to the same part of the image as the
dominant determinant of correlation structure. This led us to ask
whether the higher correlations in nearby cells are important in
maintaining the accuracy of decoding from large ooDSGC popu-
lations over short time scales. In other words, are responses to
global motion encoded by many small-local populations of cor-
related cells?

To test how decoding error depends on the correlations
between ooDSGCs, the OLE (trained on an unmodified response
set) was tested on either an unmodified (cross-validated, control)
response set or a decorrelated (shifted) response set, in which the
response bins were shifted in time during a drifting image (Fig.
4B). Shifting responses in time independently across ooDSGCs
eliminates correlations due to local contrast fluctuations in the
stimulus and noise correlations introduced by retinal circuits.
However, this manipulation maintains correlations due to the
direction of motion. Thus, shifting responses in time undermines
the population response structure caused by the particular spatial
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locations of the cells, and is similar to selecting populations of
ooDSGCs randomly in space. Across a range of integration
times, the “shifted” response sets showed little change in contin-
uous decoding error (Fig. 4C). This result suggests that decoding
of direction from large ooDSGC populations does not depend on
correlations, even when those correlations are relatively large.

To further investigate the role of correlations in decoding
ooDSGC population responses, we again decoded the direction
of natural images moving in a constant direction and speed.
Instead of shifting ooDSGC responses in time, we shuffled
ooDSGC responses across repeated presentation of the same
stimulus. This manipulation preserves spiking correlations that
are stimulus induced; e.g., those caused by cells observing the
same motion direction and those caused by local contrast struc-
ture in the image. However, this manipulation specifically elimi-
nates noise correlations. The results were very similar to those
obtained by time shifting the responses (results differed by ,2%
at 2-, 20-, and 200-ms decoding windows from time shifting
responses, comparison includes two ooDSGC populations of 43
and 47 ooDSGCs from two retinas).

These result differ substantially from previous findings where
trial-to-trial noise correlations alone were shown to significantly
decrease decoding error by maintaining orthogonality between
signal and noise (Franke et al., 2016; Zylberberg et al., 2016).
However, there are three critical differences: First, we are decod-
ing ooDSGC responses over shorter time windows, which will
tend to reduce the amount of correlations and their impact on
decoding. Second, we are decoding global motion instead of local
motion, which reduces the number of spikes and the amount of
correlated spiking. Third, previous studies focused almost exclu-
sively on DSGCs with large amounts of receptive field overlap to
maximize the amount of signal and noise correlations. This pre-
dicts that if we focused on the strongest responses (those with
the most spikes), decoded over longer time windows, and only
analyzed cells with large RF overlap, we should start to observe
an effect of removing correlations on direction decoding.

To test this prediction, we focused on decoding quartets with
high RF overlap during time periods when they were strongly
responding. We used the OLE magnitude to select the time bins
in which the ooDSGCs population was responding most strongly
(Fig. 2A). The OLE magnitude will be highest when multiple
cells, with similar tuning are responding most strongly. We

assess the median error during the top 10% magnitude responses
and term this the “conditional error” (because it is conditioned
on the OLE magnitude being high). As predicted, the conditional
error in quartets began to be sensitive to correlation structure at
long integration times (Fig. 4D). Specifically, shifting the
response bins in time to a constantly drifting image increased the
error at long integration times but not at short integration times
(Fig. 4D). Similar results were obtained when shuffling responses
across repeated presentation of the stimulus, to specifically elimi-
nate noise correlations (data not shown). These results are
smaller than in previous studies (Franke et al., 2016; Zylberberg
et al., 2016), likely because ooDSGC produce (even during the
strongest responses) fewer spikes to global motion in a natural
image than to a high contrast circle or bar moving on a uniform
gray background. Thus, the impact of correlations on decoding
depends critically on the integration time for decoding and the
nature of the stimulus-response relationship, correlations being
important when decoding large responses integrated over long
time windows. We later extend these results to large modeled DS
populations with complete mosaics (Fig. 5).

Non-DS cells do not improve direction decoding over short
integration times
The analyses above indicate that correlations between ooDSGCs
are not useful to account for local image intensity when decoding
the direction of motion in short integration times. However,
local image intensity influences the spike rates of non-DS RGCs,
as well as DSGCs. Potentially, non-DS RGCs that share substan-
tial receptive field overlap with ooDSGCs could be used to help
decode the direction of motion by discounting local image inten-
sity. Indeed, correlations between tuned and untuned neurons
have been shown to improve decoding from other neural popu-
lations (Leavitt et al., 2017; Zylberberg, 2018).

To assay whether non-DS RGCs can help decode the direc-
tion of motion, we decoded using both identified ooDSGCs and
non-DS cells. Using local groups with substantial receptive field
overlap (;30 neurons), the direction of motion was first decoded
using an OLE. There was not a significant difference between
decoding performance with or without non-DS cells (data not
shown). This result is expected, because an OLE, while sensitive
to correlation structure, does not explicitly use correlated activity
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to decode (Schneidman et al., 2003; Shamir and Sompolinsky,
2004). Consistent with this result, only using non-DS RGCs to
decode motion direction with an OLE yielded very poor decod-
ing performance (Fig. 3D). Alternatively, an OQE explicitly uses
correlations between neurons to decode by weighting the syn-
chronous activity between neurons to estimate the direction of
motion (Shamir and Sompolinsky, 2004; Fig. 4E; see Materials
and Methods). However, like the OLE, the OQE accuracy was
similar when decoding from DS only versus DS and non-DS
populations over short integration times (Fig. 4F). There was a
small decrease in error when including non-DS cells and decod-
ing with longer integration times (Fig. 4F). Indeed, the OQE and
OLE using DS cells alone provided similar accuracy (Fig. 4G),
indicating little benefit from this form of nonlinear decoding in
these conditions. Finally, the OLE and OQE also performed sim-
ilarly when using only non-DS RGCs, with the OQE exhibiting
4° improvement (median over 2-, 20-, 200-, and 2000-ms time
bins) in decoding performance over the OLE (data not shown).
Thus, decoding of the direction of motion continuously with
short integration bins is effectively performed by a linear decoder
that integrates signals from a large tuned population with little
benefit from correlated activity between tuned or untuned neu-
rons. Note, we are not saying that other classes of decoders that
are more explicitly constructed to decode motion from untuned
neurons could not be useful for bolstering signals from DSGCs.
For example, Reichardt detectors, which introduce a temporal
delay between the joint activity of RGCs can be used to decode
motion from non-DS RGC signals (Frechette et al., 2005).

Noise and temporal integration dictate spatial decoding
constraints in model
The analyses above indicate that large populations of nearly inde-
pendent ooDSGCs can be leveraged to rapidly decode the direc-
tion of motion, while increasing temporal integration increases
the importance of spatial correlation structure for accurate
decoding. Ostensibly, the relationship between temporal integra-
tion and sensitivity to local correlations could be explained by
the presence of high temporal frequency noise in ooDSGC
responses. To better understand how noise and temporal inte-
gration influence population decoding we created a model that
simulated responses from complete ooDSGC mosaics of various
sizes and organizations (see Materials and Methods). In brief,
each modeled DS-unit response was generated from a distinct
linear-nonlinear model (Fig. 5A) with its position and direction
orientation determined by one of four modeled mosaics (Fig.
5B). The linear filter provides direction tuning and the non-line-
arity was adjusted to generate on-off responses with sparsity sim-
ilar to that in the data. The DS-units were stimulated with a
moving image used on the retina and the direction of motion
was decoded at each time point from the population responses
(Fig. 5C). Note, decoding performance for the model (Fig. 5C)
was better than for the data (Fig. 2C), because 532 simulated DS-
units (133 for each direction) were used in the model, compared
with just;50 real DSGCs to decode with data. To test the spatial
sensitivity of the decoder, populations were decoded either from
local subsets (Fig. 5Bii) or from DS-units with randomly chosen
spatial locations (Fig. 5Biii).

To begin, the responses of the DS-units were noiseless. In this
case, (signal) correlations between nearby DS-units were much
higher than that observed in the measured data (Fig. 5D, black
curve). These correlations are caused by local image statistics
and while they are diminished by the non-linearity that produces
the sparse responses, they remain very high between cells with

high receptive field overlap. In the absence of noise, decoding
error was substantially increased when decoding from DS-units
with random spatial locations (Fig. 5Ei) or shuffled responses
(data not shown), supporting previous work illustrating the im-
portance of maintaining (signal or noise) correlations in decod-
ing direction (Franke et al., 2016; Zylberberg et al., 2016).
Adding independent noise to each DS-unit reduced local (stimu-
lus induced) correlations substantially (Fig. 5D, red curve) and
greatly reduced the sensitivity of decoder performance on the
spatial arrangement of the DS-units (Fig. 5Eii). Finally, tempo-
rally integrating the noisy responses partially rescued the correla-
tion structure produced by the natural image (Fig. 5D, blue
curve) and increased the sensitivity of the decoder to the spatial
structure of the correlations (Fig. 5Eiii). This model illustrates
that temporal integration influences correlation structure (at
least in this example) and that it dictates the decoder’s reliance
on those correlations. This helps to resolve the discrepancy
between this study and previous studies (Franke et al., 2016;
Zylberberg et al., 2016), which have highlighted the importance
of correlations for decoding DSGC population responses: Here,
brief temporal integration was required to decode dynamic
global motion, while previous work focused long temporal inte-
gration because motion stimuli were local and had a static
velocity.

Discussion
To fully understand neural function, activity must be measured
within an appropriate ecological context. While completely natu-
ral stimuli are difficult to produce and parameterize (Rust and
Movshon, 2005), increasing stimulus complexity toward more
natural contexts can help evaluate ideas about neural function
derived from using simpler stimuli. In this article, we assayed the
potential of populations of ooDSGCs to signal the direction of
dynamic global motion of a natural scene. While the stimulus we
used falls short of capturing the full complexity of global motion
as a mouse moves through the environment, it offers some fea-
tures beyond drifting gratings or moving spots, while also pro-
viding more control over the stimulus than natural movies. For
example, this stimulus has naturalistic statistics such as spatial
structure that falls off (on average) as the inverse of the spatial
frequency, but with high-contrast edges and objects not present
in pink noise. Also, the frequency of direction changes can be
manipulated to analyze how decoding performance depends on
frequent direction changes (Fig. 2D) versus constant velocity
motion (Fig. 2G).

Using this stimulus, we describe several novel findings. First,
mammalian ooDSGCs integrate global motion signals over
;200ms and respond sparsely but reliably (Fig. 1). This sparsity
necessitates long integration times to decode accurately using
small ooDSGC populations, which precludes decoding frequent
changes in motion direction accurately and rapidly (Fig. 2). On
the other hand, large populations of ooDSGCs can be used to
more accurately and rapidly decode dynamic changes in the
direction of global motion (Figs. 3, 5). Together, these findings
support the idea that ooDSGCs could contribute to global
motion processing (Sabbah et al., 2017). Below, we discuss these
findings in the context of previous research.

Functional role of ooDSGCs
Several lines of evidence have supported the role of ooDSGCs in
coding local motion. This is based primarily on three observa-
tions: (1) ooDSGCs exhibit diminished spike rates to global
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relative to local motion (so-called surround suppression; Vaney
et al., 2001; Chiao and Masland, 2003; Olveczky et al., 2003;
Hoggarth et al., 2015; Huang et al., 2019); (2) oDSGCs do not ex-
hibit surround suppression; (3) ooDSGCs have small receptive
fields and a high density, which seem unnecessary for signaling
global motion (Vaney et al., 2001).

Regarding (1), recent work shows direction selectivity is
maintained in global motion and that surround suppression may
preferentially attenuate luminance responses (Hoggarth et al.,
2015; Im and Fried, 2016). This suggests that the attenuation
may emphasize direction information rather than obscuring it.
Regarding (2), oDSGCs exhibit similar response structure to
ooDSGCs to dynamic global motion (Fig. 1). While the incom-
pleteness of our oDSGC populations prevented an analysis of
decoding their responses, the similarity in their encoding proper-
ties to ooDSGCs suggests similar decoding performance.
Regarding (3), we showed that large dense populations are
actually necessary to accurately and rapidly signal dynamic
global motion given the sparsity of ooDSGC responses. Finally, a
recent study showed that the cardinal axes formed by ooDSGCs
align with the axes of self-motion on the retina, suggesting that
the population is geared to signal global motion (Sabbah et al.,
2017). Thus, we think it is plausible that ooDSGCs play a signifi-
cant role in signaling global motion.

None of these arguments rule out a role for ooDSGCs to also
encode local motion (see below). ooDSGCs clearly respond vigo-
rously to moving spots and bars, which may be reasonable prox-
ies for local motion in nature.

Challenges and constraints to continuously decoding
ooDSGC population responses
Response sparsity and stimulus variability preceding a spike (i.e.,
broad tuning) challenges a downstream decoder that must
(nearly) continuously and accurately estimate a dynamic stimu-
lus. This is a distinct decoding regime from that often investi-
gated; i.e., when constant velocity stimuli produce high firing
rates (Theunissen and Miller, 1991; Fiscella et al., 2015; Marre et
al., 2015; Kühn and Gollisch, 2019) in a population of narrowly
tuned neurons (Jazayeri and Movshon, 2006). Previous studies
decoding dynamic motion stimuli from retina have used the
optimal linear filter approach (Warland et al., 1997; Marre et al.,
2015; Kühn and Gollisch, 2019). This approach temporally inte-
grates spike rates with a fixed filter to provide a continuous opti-
mal linear estimate. Our approach differs from the optimal linear
filter approach because we explored a range of integration times.
Integrating over or under the optimal temporal range will
increase the total mean squared error of the estimate but can
decrease the error at specific temporal frequencies. Thus, this
approach can highlight tradeoffs inherent in decoding visual in-
formation. While previous studies have used long temporal inte-
gration windows to improve decoding (Fiscella et al., 2015), we
show that such strategies come at a significant cost to temporal
resolution for decoding rapidly changing stimuli (Fig. 2D).

To better illustrate the spatial-temporal trade-off in decoding,
we constructed a simple model of signal and noise separation
(Fig. 6). In this model, noise is separated from signal using a lin-
ear filter that integrates over space and time (Fig. 6A). As we
observed for decoding ooDSGC population responses, temporal
integration can improve signal detection by preferentially attenu-
ating high-frequency noise. This noise reduction strategy is lim-
ited though by the presence of a high (temporal) frequency
signal, as further integration begins to degrade both signal and
noise (Fig. 6Bi). The same problem occurs when integrating

spatially (Fig. 6Bii). However, the greater the spatial integration,
the less temporal integration is needed to improve signal detec-
tion, sparing the high-frequency temporal signal. A similar
trade-off can be made in the opposite direction, by sacrificing
temporal resolution for greater spatial resolution. Thus, in
extracting information, a decoder can choose to focus on spatial
or temporal resolution, at a cost to the temporal or spatial resolu-
tion, respectively (Fig. 6C). Dynamic global motion requires high
temporal resolution but minimal spatial resolution: we show that
the population response of ooDSGCs permits a regime for accu-
rately decoding this stimulus at short timescales with a simple
linear decoder.

Comparison to salamander DSGCs
This study complements a conceptually similar study recently
performed in the salamander retina (Kühn and Gollisch, 2019).
In that study, textures were presented and dynamically displaced
while recording responses from populations of OFF DSGCs.
These OFF DSGCs may be analogous to mammalian oDSGCs,
because they exhibit minimal surround suppression and are
organized along three directions (Kühn and Gollisch, 2016). Like
our study, the authors examined both encoding and decoding
performance.

For encoding, salamander OFF DSGCs responded in a man-
ner sensitive to the direction of global motion and integrated
motion over ;200ms, similar to the results presented here. It is
interesting to note that the integration was similar despite the
difference in species and the substantial differences in the record-
ing temperatures: 21°C (salamander) and 34°C (mouse).

For decoding, there are several differences between the two
studies. First, we used the OLE (and OQE) while the previous
study used the “optimal linear filter” approach (see Challenges
and constraints to continuously decoding ooDSGC population
responses for comment on these approaches; Warland et al.,
1997). Second, the previous study quantified decoding perform-
ance in terms of Shannon information, while we quantified it in
terms of degrees of visual angle. Third, the previous study
focused on the synergy available for decoding when cells with
different preferred directions were used by the decoder, while we
focused on how decoding performance depended on population
size, decoding timescale, and correlation structure. Nevertheless,
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a few coherent comparisons can be made. First, both studies
indicate that noise correlations play a minimal role in rapidly
decoding global motion. Second, both studies show that rapid
changes in the direction of global motion are poorly decoded
from small populations of DSGCs. For example, extrapolating
Kühn and Gollisch (2019), their Figure 2, a population of 20 sala-
mander DSGCs provides little information (,0.1 bits in 1 s, or
.80° expected error) for .5-Hz (,200-ms) changes in global
motion direction. Thus, across species, large populations of
DSGCs are required to approach reasonable decoding accuracy
for rapid changes in global motion. However, given that the
mouse retina has ;8000 ooDSGCs (;400 cells/mm2 � ;20
mm2; Rivlin-Etzion et al., 2011; Trenholm et al., 2011) accurate
decoding of global motion at short timescales is conceptually
achievable.

Our study departs from previous work by analyzing global
motion processing in the mouse retina. Furthermore, we explic-
itly show that (1) the encoding and response statistics of
oDSGCs and ooDSGCs are similar for global motion; (2) large
populations of ooDSGCs can be used to decode global motion
with high temporal resolution; and (3) the nature of ooDSGC
population codes depends on the nature of the stimulus and the
constraints of the decoding task, such as the necessity of high-
temporal versus high-spatial resolution.

The importance of correlation on neural decoding
The role of correlated activity in neural coding is intensely
debated in neuroscience (Schneidman et al., 2003; Latham and
Nirenberg, 2005; Averbeck et al., 2006; Shamir, 2014).
Mammalian ooDSGCs have provided a useful model system to
understand the sources and impact of correlated activity
(Amthor et al., 2005; Franke et al., 2016; Zylberberg et al., 2016).
Those studies largely pointed to correlations exerting a benefit
on DSGC population codes. We show that this result depends on
context. When integrating (or decoding) over long timescales,
correlation strength can be high and can improve decoding per-
formance (Fig. 4D). However, when integrating (or decoding)
over short timescales, correlations are small, even over many
cells, and thus decoding performance is independent of the cor-
relations (Fig. 4C,D). We also show that correlations between
DSGC and non-DS RGC weakly impacted decoding error over
short integration times (Fig. 4G). These observations suggest that
shared noise exists at lower temporal frequencies than independ-
ent noise. Thus, as demonstrated in a model (Fig. 5), temporal
integration diminishes independent noise and strengthens corre-
lations in local populations, shifting the decoder’s input from in-
dependent to locally correlated populations.

These observations have implications for downstream circuits
that process retinal signals. Circuits that decode local motion
stimuli can leverage temporal integration to diminish independ-
ent noise without sacrificing spatial resolution. This favors a de-
coder using local correlations, which help maintain a robust
population response during a transient stimulus. In contrast,
downstream circuits that decode global motion stimuli can pool
over large numbers of ooDSGC assuming independence to
achieve a nearly continuous readout of motion direction. This
suggests distinct decoding regimes - decoders for large, fast visual
stimuli relying on independent inputs and decoders for small
and slow stimuli using correlated inputs. This may help explain
why ooDSGC axons diverge to multiple downstream brain cir-
cuits including the lateral geniculate nucleus and superior colli-
culus (Kay et al., 2011). Future work may reveal that these
distinct circuits instantiate these distinct decoding regimes. It is

also possible that neuromodulators alter the integration times
within a single circuit (Higley et al., 2009), switching between the
two decoding regimes dynamically depending on current task
demands.
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